Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Eukaryotic Gene Expression
Facteur d'impact: 1.841 Facteur d'impact sur 5 ans: 1.927 SJR: 0.627 SNIP: 0.516 CiteScore™: 1.96

ISSN Imprimer: 1045-4403
ISSN En ligne: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v19.i1.10
pages 1-46

Signaling Networks that Control the Lineage Commitment and Differentiation of Bone Cells

Carrie S. Soltanoff
Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA
Wei Chen
Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA; and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
Shuying Yang
Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA; and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
Yi-Ping Li
Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA; and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA

RÉSUMÉ

Osteoblasts and osteoclasts are the two major bone cells involved in the bone remodeling process. Osteoblasts are responsible for bone formation while osteoclasts are the bone-resorbing cells. The major event that triggers osteogenesis and bone remodeling is the transition of mesenchymal stem cells into differentiating osteoblast cells and monocyte/macrophage precursors into differentiating osteoclasts. Imbalance in differentiation and function of these two cell types will result in skeletal diseases such as osteoporosis, Paget's disease, rheumatoid arthritis, osteopetrosis, periodontal disease, and bone cancer metastases. Osteoblast and osteoclast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. This review summarizes recent advances in studies of signaling transduction pathways and transcriptional regulation of osteoblast and osteoclast cell lineage commitment and differentiation. Understanding the signaling networks that control the commitment and differentiation of bone cells will not only expand our basic understanding of the molecular mechanisms of skeletal development but will also aid our ability to develop therapeutic means of intervention in skeletal diseases.


Articles with similar content:

Regulatory Mechanisms Operative in Osteoclasts
Critical Reviews™ in Eukaryotic Gene Expression, Vol.14, 2004, issue 4
Sakamuri V. Reddy
Role of DLX Regulatory Proteins in Osteogenesis and Chondrogenesis
Critical Reviews™ in Eukaryotic Gene Expression, Vol.17, 2007, issue 3
Giovanni Levi, Marie-Christine de Vernejoul, Nadeem Samee
Thymus-Derived Signals Regulate Early T-Cell Development
Critical Reviews™ in Immunology, Vol.25, 2005, issue 2
Thomas M. Schmitt, Juan Carlos Zuniga-Pflucker
Cross-Regulation Between WNT and NF-κB Signaling Pathways
Forum on Immunopathological Diseases and Therapeutics, Vol.1, 2010, issue 3
Qiang Du, David Geller
Regulatory Controls for Osteoblast Growth and Differentiation: Role of Runx/Cbfa/AML Factors
Critical Reviews™ in Eukaryotic Gene Expression, Vol.14, 2004, issue 1&2
Sayyed Kaleem Zaidi, Janet L. Stein, Jane B. Lian, Martin Montecino, Andre J. van Wijnen, Amjad Javed, Gary S. Stein, Christopher Lengner