Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal of Medicinal Mushrooms
Facteur d'impact: 1.423 Facteur d'impact sur 5 ans: 1.525 SJR: 0.433 SNIP: 0.661 CiteScore™: 1.38

ISSN Imprimer: 1521-9437
ISSN En ligne: 1940-4344

Volumes:
Volume 21, 2019 Volume 20, 2018 Volume 19, 2017 Volume 18, 2016 Volume 17, 2015 Volume 16, 2014 Volume 15, 2013 Volume 14, 2012 Volume 13, 2011 Volume 12, 2010 Volume 11, 2009 Volume 10, 2008 Volume 9, 2007 Volume 8, 2006 Volume 7, 2005 Volume 6, 2004 Volume 5, 2003 Volume 4, 2002 Volume 3, 2001 Volume 2, 2000 Volume 1, 1999

International Journal of Medicinal Mushrooms

DOI: 10.1615/IntJMedMushrooms.2018027357
pages 859-871

Triterpenes and Soluble Polysaccharide Changes in Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), During Fruiting Growth

Shuai Zhou
Key Laboratory of Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China; National Engineering Research Centre of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilisation, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, Shanghai, People's Republic of China
Qingjiu Tang
National Engineering Research Centre of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilisation, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, Shanghai, People's Republic of China
Chuanhong Tang
National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
Yanfang Liu
National Engineering Research Centre of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilisation, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, Shanghai, People's Republic of China
Fuying Ma
Key Laboratory of Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
Xiaoyu Zhang
Key Laboratory of Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
Jing-Song Zhang
National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China

RÉSUMÉ

We analyzed the changes in triterpenes and soluble polysaccharides in Ganoderma lucidum strain G0119 during 4 growth phases in 3 regions of the fruiting bodies using reversed-phase high-performance liquid chromatography, and we also analyzed the soluble polysaccharides using high-performance size-exclusion chroma-tography-multiple-angle laser-light scattering refractive index analysis. The strong polar triterpenes decreased while weak polar triterpenes increased during the growth cycle of G. lucidum. The highest contents of ganoderic acid B, ganoderic acid A, and ganoderenic acid B were detected in the stipe during phase II, and ganoderic acid S, ganoderic acid T, and ganoderiol B peaked in the base during phase IV. The total content of soluble polysaccharides in samples decreased after the primordium developed into a fruiting body. Two high-molecular-weight fractions were detected in the soluble polysaccharide samples: α-l,4-glucan and β-l,3-glucan, respectively. They were primarily distributed in the pileus during phase II, and both decreased after this phase. These results led us to select a more suitable growth phase and region for harvesting to obtain extracts with higher contents of triterpenes and soluble polysaccharides.


Articles with similar content:

Antitumor Polysaccharides from Edible and Medicinal Mushrooms and Immunomodulating Action Against Murine Macrophages
International Journal of Medicinal Mushrooms, Vol.3, 2001, issue 4
Hitoshi Ashida, Takashi Hashimoto, Ken-ichiro Minato, Sachiko Kawakami, Masashi Mizuno
Enhanced Release of Immunostimulating β-1,3- Glucan by Autodigestion of the Lingzhi Medicinal Mushroom, Ganoderma lingzhi (Agaricomycetes)
International Journal of Medicinal Mushrooms, Vol.19, 2017, issue 1
Yoshiyuki Adachi, Toshitsugu Miyazaki, Hisatomi Ito, Daisuke Yamanaka, Yuina Ishimoto, Kentaro Igami, Naohito Ohno, Ken-Ichi Ishibashi
Determination of the Antioxidant Activity and Polyphenol Contents of Wild Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (W.Curt. Fr.) P. Karst. (Higher Basidiomycetes) from Central Himalayan Hills of India
International Journal of Medicinal Mushrooms, Vol.13, 2011, issue 6
Prem Singh Negi, Zakwan Ahmed, Mohammed Mohsin
Antioxidant and Cholesterol Esterase Inhibitory Properties of Supplementation with Coconut Water in Submerged Cultivation of the Medicinal Chinese Caterpillar Mushroom, Ophiocordyceps sinensis CS1197 (Ascomycetes)
International Journal of Medicinal Mushrooms, Vol.19, 2017, issue 4
B. Manohar, S. Sravan Kumar, G. M. Shashidhar, P. Giridhar
Complex Enzyme-Assisted Extraction, Purification, and Antioxidant Activity of Polysaccharides from the Button Mushroom, Agaricus bisporus (Higher Basidiomycetes)
International Journal of Medicinal Mushrooms, Vol.17, 2015, issue 10
Xiulian Yin, Qinghong You, Xinghai Zhou