Abonnement à la biblothèque: Guest
International Journal of Fluid Mechanics Research

Publication de 6  numéros par an

ISSN Imprimer: 2152-5102

ISSN En ligne: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Experimental Analysis of Non Circular Co-Flow in the Incompressible Coaxial Jets

Volume 39, Numéro 4, 2012, pp. 325-347
DOI: 10.1615/InterJFluidMechRes.v39.i4.40
Get accessGet access

RÉSUMÉ

This paper analyses an alternative paradigm for 'incompressible coaxial jet' from the conventional mode of circular coaxial jet. The experimental analysis of incompressible co-axial jet has been presented. The characteristics of non-circular co-flow jets have been analysed for different shapes of nozzles, i. e. circular, hexagon and cruci-form and with various velocity ratio (Ui /Uo) like 0.7, 1.0 and 1.4. The flow field characteristics like centerline velocity, spreading rate, potential core length and turbulent characteristics have been determined experimentally through hotwire anemometer measuring technique. The inner potential core length is dependent upon the velocity ratio and the outer potential core length is dependent on the co-flow shapes. It was found that the centerline velocity decay of circular co-flow jet was relatively less than the non-circular co-flow jet. Coaxial jets with the velocity ratio less than unity develop faster than that velocity ratio greater than unity. The velocity ratio less than unity is to enhance the rapid mixing between the two streams when compared to the velocity ratio more than unity. The turbulence intensity of non-circular co-flow jet was more than the circular co-flow jet.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain