Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal of Fluid Mechanics Research
ESCI SJR: 0.22 SNIP: 0.446 CiteScore™: 0.5

ISSN Imprimer: 2152-5102
ISSN En ligne: 2152-5110

Volumes:
Volume 46, 2019 Volume 45, 2018 Volume 44, 2017 Volume 43, 2016 Volume 42, 2015 Volume 41, 2014 Volume 40, 2013 Volume 39, 2012 Volume 38, 2011 Volume 37, 2010 Volume 36, 2009 Volume 35, 2008 Volume 34, 2007 Volume 33, 2006 Volume 32, 2005 Volume 31, 2004 Volume 30, 2003 Volume 29, 2002 Volume 28, 2001 Volume 27, 2000 Volume 26, 1999 Volume 25, 1998 Volume 24, 1997 Volume 23, 1996 Volume 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v24.i4-6.50
pages 488-497

Initial Atomization of an Intermittent Spray from a Diesel Nozzle

Hideo Takahashi
Department of Mechanical Engineering, Gunma College of Technology, Gunma, Japan
M. Kono
Department of Aeronautics & Astronautics, University of Tokyo, Tokyo, Japan
Hiroki Yanagisawa
Mitsubishi Motor Corporation
Siichi Shiga
Department of Mechanical Engineering, Faculty of Engineering, Gunma University, Gunma, Japan
Takao Karasawa
Department of Mechanical Engineering, Faculty of Engineering, Gunma University, Gunma, Japan
Hisao Nakamura
Department of Mechanical Engineering, Faculty of Engineering, Gunma University, Gunma, Japan

RÉSUMÉ

The purpose of this study is to clarify the atomization mechanisms of an intermittent fuel spray in its very early stage of injection. A single hole diesel nozzle was used in rather wide range of valve opening pressure from 5 to 70 MPa. The measurement of injection pressure inside the nozzle-sac, that is just at the upstream of the orifice, was attempted by using a micro-strain gauge. Two observation apparatuses were used, an image-converting high-speed camera with the framing rate of 105 f.p.s. and an image-intensified CCD camera with high-speed gating. At the very beginning of injection, an emergence of a liquid column was observed, which had almost the same diameter as the orifice. Then the liquid column spread radially, forming a spray angle in the vicinity of the nozzle exit. The timing of the spray angle formation was shown to become earlier with increasing the in valve opening pressure. Furthermore the pressure inside the nozzle-sac at this moment did not vary. This pressure approximately corresponds to that of the transition from a wavy jet to a developed spray in the atomization regime for a steady jet. Thus, it is suggested that the atomization mechanism of a steady jet could be applicable to the unsteady spray formation process. Under several injection conditions, it was observed the formation of a thin thread at the tip of the original spray. It appeared at the very beginning of injection, and developed to the length of 2 or 3 mm. The tip gradually broke up, decreased the velocity, and was finally caught up by the original spray.


Articles with similar content:

EFFECT OF NOZZLE HOLE GEOMETRY ON NON-EVAPORATING DIESEL SPRAY CHARACTERISTICS AT HIGH-PRESSURE INJECTION
Atomization and Sprays, Vol.22, 2012, issue 1
Jangsik Kong, Choongsik Bae

A Study of the Injection of Twin Pulsed High Speed Liquid Jets Across Transonic Region
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 4-6
Motoyuki Itoh, H.-H. Shi

Image Analysis of a Diesel Spray Impinging on a Wall
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 1-3
Masataka Arai, T. Ebara, Kenji Amagai

REATTACHMENT PHENOMENON OF A HIGH-SPEED HYDROGEN JET DIFFUSION FLAME
Journal of Flow Visualization and Image Processing, Vol.8, 2001, issue 2-3
Toshiaki Yano, Byong-Koog Jung

CHARACTERIZATION OF EVAPORATING DIESEL SPRAYS USING EXCIPLEX LASER-INDUCED FLUORESCENCE MEASUREMENTS
Atomization and Sprays, Vol.13, 2003, issue 5&6
J. B. Ghandhi, T. Kim