Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal of Fluid Mechanics Research
ESCI SJR: 0.22 SNIP: 0.446 CiteScore™: 0.5

ISSN Imprimer: 2152-5102
ISSN En ligne: 2152-5110

Volumes:
Volume 46, 2019 Volume 45, 2018 Volume 44, 2017 Volume 43, 2016 Volume 42, 2015 Volume 41, 2014 Volume 40, 2013 Volume 39, 2012 Volume 38, 2011 Volume 37, 2010 Volume 36, 2009 Volume 35, 2008 Volume 34, 2007 Volume 33, 2006 Volume 32, 2005 Volume 31, 2004 Volume 30, 2003 Volume 29, 2002 Volume 28, 2001 Volume 27, 2000 Volume 26, 1999 Volume 25, 1998 Volume 24, 1997 Volume 23, 1996 Volume 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v24.i4-6.20
pages 461-470

Effects of the Internal Flow in a Nozzle Hole on the Breakup Processes of a Liquid Jet

N. Tamaki
Department of Mechanical Engineering, Kinki University Takaya, Umenobe, Higashi Hiroshima, 739-2116, Japan
Keiya Nishida
Department of Mechanical System Engineering, University of Hiroshima, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
Hiroyuki Hiroyasu
Institute of Industrial Technology, Kinki University, Higashi-Hiroshima, Japan
M. Shimizu
Department of Mechanical Engineering, Kinki University Takaya, Umenobe, Higashi Hiroshima, 739-2116, Japan

RÉSUMÉ

The purpose of this study is to clarify the breakup mechanism of a high speed liquid jet, by investigating the mutual relationship between the internal flow in the nozzle hole and the disintegration behavior of the liquid jet. In order to clarify the effects of the internal flow in the nozzle hole on the spray characteristics, experiments wane performed under conditions ranging from atmospheric to high ambient pressures, by using transparent nozzles with various length-to-diameter ratios of the nozzle hole L/D and the inlet shapes of the nozzle hole. The behaviors of the internal flow in the nozzle hole and the disintegration behavior of the liquid jets were observed by the photographic technique. Moreover, the vibration accelerations associated with disturbances in the nozzle hole were measured using a piezoelectric acceleration transducer, in order to quantify the magnitude of the disturbance of the liquid flow in the nozzle hole. It was shown that the vibration acceleration level VAL was proportional to the magnitude of the disturbance in the nozzle hole. As a consequence of this study, it has been determined that the important factor in the breakup processes of the liquid jet was the disturbance of the liquid flow due to cavitation phenomena.


Articles with similar content:

SPRAY BREAKUP MECHANISM FROM THE HOLE-TYPE NOZZLE AND ITS APPLICATIONS
Atomization and Sprays, Vol.10, 2000, issue 3-5
Hiroyuki Hiroyasu

EFFECTS OF CAVITATION AND INTERNAL FLOW ON ATOMIZATION OF A LIQUID JET
Atomization and Sprays, Vol.8, 1998, issue 2
Keiya Nishida, Hiroyuki Hiroyasu, N. Tamaki, M. Shimizu

NEAR-NOZZLE CHARACTERISTICS OF A TRANSIENT FUEL SPRAY
Atomization and Sprays, Vol.5, 1995, issue 1
Jay K. Martin, Jaye Koo

GAS ENTRAINMENT CHARACTERISTICS OF DIESEL SPRAY DURING END OF INJECTION TRANSIENT
Atomization and Sprays, Vol.19, 2009, issue 11
Keiya Nishida, Yuhei Matsumoto, Jeekuen Lee, Seoksu Moon

SPRAY CHARACTERISTICS OF DIESEL FUEL CONTAINING DISSOLVED CO2
Atomization and Sprays, Vol.21, 2011, issue 11
Eran Sher, M. Karaeen