Abonnement à la biblothèque: Guest
International Journal of Fluid Mechanics Research

Publication de 6  numéros par an

ISSN Imprimer: 2152-5102

ISSN En ligne: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Nonlinear-Dispersive Model of Surface Wave Transformation in Littoral Zone of Sea Covered With Ice

Volume 28, Numéro 1&2, 2001, pp. 135-150
DOI: 10.1615/InterJFluidMechRes.v28.i1-2.100
Get accessGet access

RÉSUMÉ

The long-wave nonlinear-dispersion model, describing the propagation of flexural-gravitational waves in an elastic plate, floating on a surface of a liquid of variable depth, is constructed. The model takes into account effects of the nonlinear dispersion and inertion, elasticity and geometrical nonlinear deflection of plates. On the basis of the general model the hierarchical sequence of more simple models is developed. This models generalize the known in the water wave theory models of Peregreen, Boussinesq and Korteweg - de Vries for the case of the flexural-gravitational waves. In the particular case of generalized equation of Korteweg - de Vries an exact solution has been obtained. This solution describes the properties of solitons and cnoidal waves in the sea covered with the broken and unbroken ice. It is shown that the flexural-gravitational waves are overturned, in comparison with the long nonlinear water waves. With regard to the solitons it means, that the trough propagates without changes of the surface form, while for the clear water the crest does. The propagation velocity of flexural-gravitational waves decreases with the increase of wave amplitude. Moreover the characteristics of flexural gravitational waves are determined by the wave amplitude and dispersion due to flexural rigidity of the plate and do not depend on water dispersion and inertial properties of the ice cover.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain