Abonnement à la biblothèque: Guest
International Journal of Fluid Mechanics Research

Publication de 6  numéros par an

ISSN Imprimer: 2152-5102

ISSN En ligne: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

COMPUTATIONALLY INEXPENSIVE FREE VORTEX METHOD TO OBTAIN VORTEX CORE POSITION IN THE WAKE OF A HORIZONTAL AXIS WIND TURBINE

Volume 44, Numéro 5, 2017, pp. 427-443
DOI: 10.1615/InterJFluidMechRes.2017019852
Get accessGet access

RÉSUMÉ

This work aims to develop a free wake model, allowing quick simulation of flow through a horizontal axis wind turbine. The rapidity of computation is particularly interesting when this aerodynamic model is integrated with complementary mechanical and electrical models in order to study the unsteady behavior of the complete chain of energy transfer in the wind turbine. The proposed model takes into account both the tangential and longitudinal vorticity of the vortex system formed behind the rotor. The employed vortex system replaces the helical wake close to the wind turbine by a series of vortex rings and the far wake by a semi-infinite vortex cylinder. By taking into account the root vortex, the proposed model is used to study the development of the near wake of a horizontal axis wind turbine for different speeds of rotation. The shape of the near wake as well as the position of the trailing vortices are compared with particle image velocimetry experimental results for a low-power wind turbine tested in the wind tunnel of Arts et Métiers-ParisTech. The model shows a good agreement between the calculation and the experience.

CITÉ PAR
  1. Wang Yuanbo, Miao Weipao, Ding Qinwei, Li Chun, Xiang Bin, Numerical investigations on control strategies of wake deviation for large wind turbines in an offshore wind farm, Ocean Engineering, 173, 2019. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain