Abonnement à la biblothèque: Guest
Interfacial Phenomena and Heat Transfer

Publication de 4  numéros par an

ISSN Imprimer: 2169-2785

ISSN En ligne: 2167-857X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.5 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00018 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.11 SJR: 0.286 SNIP: 1.032 CiteScore™:: 1.6 H-Index: 10

Indexed in

ELECTROHYDRODYNAMIC INSTABILITY OF NON-NEWTONIAN DIELECTRIC LIQUID SHEET ISSUED INTO STREAMING DIELECTRIC GASEOUS ENVIRONMENT

Volume 3, Numéro 2, 2015, pp. 159-183
DOI: 10.1615/InterfacPhenomHeatTransfer.2015012285
Get accessGet access

RÉSUMÉ

The linear electrohydrodynamic instability of a non-Newtonian dielectric liquid sheet issued in an inviscid gas medium of different velocity has been investigated using the Oldroyd eight-constant model. The dispersion relations between the growth rates and wave numbers of both symmetric and antisymmetric disturbances are derived. Using a new simple numerical technique, the effects of various parameters included in the analysis, namely the electric field parameter, gas to liquid velocity ratio, gas and liquid dielectric constants, time constant ratio, liquid elasticity, liquid viscosity, gas to liquid density ratio, surface tension, and liquid sheet velocity on the growth rates of symmetric and antisymmetric disturbances are studied in detail. It is found that the antisymmetric disturbances always prevail over symmetric disturbances, and the applied electric field, elasticity number, liquid velocity, gas Weber number, and gas to liquid density ratio have destabilizing effects, while the time constant ratio, surface tension, and liquid viscosity have stabilizing effects. It is also found that the gas to liquid velocity ratio and the dielectric constants have dual roles on the stability of the system (stabilizing as well as destabilizing) under certain conditions. The effects of various parameters on both the maximum growth rates and the dominant wave numbers for symmetric and antisymmetric disturbances have been discussed in detail.

CITÉ PAR
  1. Yoshinaga Takao, Okamoto Mitsuhiro, Breakup modes of a planar liquid jet in a static electric field, Fluid Dynamics Research, 50, 4, 2018. Crossref

  2. Yoshinaga Takao, Linear instabilities of a planar liquid sheet in a static electric field for intermediate relaxation and convection of surface charges, Fluid Dynamics Research, 50, 2, 2018. Crossref

  3. Moatimid Galal M, Amer Mohamed F E, EHD instability of two rigid rotating dielectric columns in porous media, Pramana, 95, 1, 2021. Crossref

  4. El-Sayed Mohamed Fahmy, Alanzi Agaeb Mahal, Electrohydrodynamic Liquid Sheet Instability of Moving Viscoelastic Couple-Stress Dielectric Fluid Surrounded by an Inviscid Gas through Porous Medium, Fluids, 7, 7, 2022. Crossref

  5. Alali Elham, Moatimid Galal M., Amer Mohamed F.E., EHD stability of two horizontal finite conducting rotating viscous fluids: Effects of energy and concentration distributions, Results in Physics, 40, 2022. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain