Abonnement à la biblothèque: Guest
Page d'accueil ICHMT DL Année en cours Archives Comité de direction Centre international pour le transfert de chaleur et de masse


DOI: 10.1615/ICHMT.2000.TherSieProcVol2TherSieProcVol1.240
pages 177-183

Iztok Tiselj
Reactor Engineering Division, Institut Jozef Stefan, Slovenia

Elena Pogrebnyak
Department of Mechanical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel

Albert Mosyak
Department of Mechanical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel

Gad Hetsroni
Department of Mechanical Engineering, Technion- Israel Institute of Technology, Technion City, 32000 Haifa, Israel


Direct numerical simulation (DNS) of the fully developed thermal field in a flume was performed. Constant heat flux boundary condition was imposed on the heated bottom in a way, which allowed tracing of the temperature fluctuations on the wall. Free surface boundary conditions for momentum and adiabatic boundary condition for temperature were applied on the free surface. Ill-posedness of the energy equation with such boundary conditions was removed with an additional constrain: average non-dimensional wall temperature was fixed to zero.
DNS was performed at constant friction Reynolds number Re=171 and Prandtl numbers 1 and 5.4. The type of the boundary condition did not affect the profile of the mean temperature. The main difference between two types of boundary conditions is in the temperature RMS fluctuations, which retain a nonzero value on the wall for constant heat flux boundary condition, and zero for constant non-dimensional temperature. Certain changes are visible also in the behavior of skewness, flatness, and other turbulent statistics in the near-wall region.
An important issue is the difference between the thermal streak spacing on the isoflux wall and the velocity streak spacing near the wall. While the thermal streaks closely follow the velocity streaks for isotemperature wall boundary condition, the temperature streaks near the isoflux wall do not coincide with the velocity low speed streaks. The DNS shows that thermal streak spacing near the wall depends on Prandtl number. Thermal streak spacing is larger than the velocity streak spacing and is approaching to the well known value of the velocity streak spacing (90-100 wall units) at Prandtl number Pr=5.4.

ICHMT Digital Library

Bow shocks on a jet-like solid body shape. Thermal Sciences 2004, 2004. Pulsed, supersonic fuel jets - their characteristics and potential for improved diesel engine injection. PULSED, SUPERSONIC FUEL JETS - THEIR CHARACTERISTICS AND POTENTIAL FOR IMPROVED DIESEL ENGINE INJECTION
View of engine compartment components (left). Plots of temperature distributions in centreplane, forward of engine (right). CHT-04 - Advances in Computational Heat Transfer III, 2004. Devel... DEVELOPMENT AND CURRENT STATUS OF INDUSTRIAL THERMOFLUIDS CFD ANALYSIS
Pratt & Whitney's F-135 Joint Strike Fighter Engine under test in Florida is a 3600F class jet engine. TURBINE-09, 2009. Turbine airfoil leading edge stagnation aerodynamics and heat transfe... TURBINE AIRFOIL LEADING EDGE STAGNATION AERODYNAMICS AND HEAT TRANSFER - A REVIEW
Refractive index reconstructed field. (a) Second iteration. (b) Fourth iteration. Radiative Transfer - VI, 2010. Theoretical development for refractive index reconstruction from a radiative ... THEORETICAL DEVELOPMENT FOR REFRACTIVE INDEX RECONSTRUCTION FROM A RADIATIVE TRANSFER EQUATION-BASED ALGORITHM
Two inclusion test, four collimated sources. Radiative Transfer - VI, 2010. New developments in frequency domain optical tomography. Part II. Application with a L-BFGS associated to an inexa... NEW DEVELOPMENTS IN FREQUENCY DOMAIN OPTICAL TOMOGRAPHY. PART II. APPLICATION WITH A L-BFGS ASSOCIATED TO AN INEXACT LINE SEARCH