Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Telecommunications and Radio Engineering

ISSN Print: 0040-2508
ISSN Online: 1943-6009

Volumes:
Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v73.i18.40
pages 1645-1659

AN APPROACH TO PREDICTION OF SIGNAL-DEPENDENT NOISE REMOVAL EFFICIENCY BY DCT-BASED FILTER

V. V. Lukin
National Aerospace University, Kharkiv, Ukraine
S. K. Abramov
Department of Transmitters, Receivers and Signal Processing, National Aerospace University (Kharkov Aviation Institute), Kharkiv, Ukraine
A. Rubel
National Aerospace University (Kharkiv Aviation Institute), 17, Chkalov St., Kharkiv, 61070, Ukraine
S. S. Krivenko
Dept 504, National Aerospace University, 17 Chkalova Str., 61070, Kharkiv, Ukraine
A. Naumenko
National Aerospace University (Kharkiv Aviation Institute), 17, Chkalov St., Kharkiv, 61070, Ukraine
Benoit Vozel
University of Rennes I − Enssat, Lannion, France
Kacem Chehdi
University of Rennes I, 6, Rue de Kerampont, 22 305 Lannion cedex, BP 80518, France
Karen O. Egiazarian
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland
J. T. Astola
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland

ABSTRACT

An approach to prediction of denoising efficiency for DCT-based filter applied to images corrupted by signal-dependent noise is presented. This approach allows estimating quantitative criteria of filtering efficiency from one statistical parameter that can be quickly calculated for a given noisy image under condition that parameters of signal-dependent noise are a priori known or pre-estimated with appropriate accuracy. We demonstrate in this paper that the prediction approach is applicable to different types of signal-dependent noise. Besides, we show that the statistical parameter used for prediction can be calculated in different ways and this influences prediction accuracy.