Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Print: 0040-2508
ISSN Online: 1943-6009

Volumes:
Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v65.i14.40
pages 1285-1291

Origins of Giant Magnetic Impedance Effect in Magnetic Nanostructures in Millimeter Waveband

S. V. Nedukh
O.Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkiv 61085, Ukraine; V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61077, Ukraine
M. K. Khodzitsky
A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine, 12, Academician Proskura Str., Kharkiv 61085, Ukraine
S. I. Tarapov
O.Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkiv 61085, Ukraine; Kharkiv National University of Radio Electronics 14, Nauka Av, Kharkiv 61166, Ukraine; V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61077, Ukraine

ABSTRACT

The dependence of a complex transmission coefficient of the electromagnetic wave passing through multilayered and granular nanostructures demonstrating giant magnetic impedance phenomenon as a function of an external magnetic field has been explored in the millimeter waveband (f =34 GHz). The magnetic multilayer film Fe6(Co1/Cu2)16 and magnetic granular film Co51.5Al19.5O29 have been investigated. The maximum magnitudes of the relative module of the complex transmission coefficient 2% and its phase shift ΔφT ≈ 1° have been detected. The interrelation between complex impedance Z and the effective conductivity of magnetic nanostructure is analyzed.


Articles with similar content:

AlGaInAs GRADED-GAP GUNN DIODE
Telecommunications and Radio Engineering, Vol.75, 2016, issue 16
I. P. Storozhenko, M. V. Kaydash
THERMAL EFFUSIVITY OF IRON OXIDE SCALE FORMED ON IRON SHEET MEASURED BY PULSED LIGHT HEATING THERMOREFLECTANCE TECHNIQUE
International Heat Transfer Conference 16, Vol.24, 2018, issue
M. Susa, R. Endo, M. Ueda, Yuanru Yang, M. Hayashi, Takashi Yagi
Abnormal Magnetic Properties of Granular Co-SiO2/GaAs Nanostructures at the Percolation Threshold Region
Telecommunications and Radio Engineering, Vol.68, 2009, issue 7
N. N. Novitskii, M. K. Khodzitsky, S. I. Tarapov, L. V. Lutsev, T. V. Bagmut, A. I. Stognij, I. G. Shipkova
Microwave Reflectivity of HTS Film - Dielectric Substrate Structure at Arbitrary Incidence Angles
Telecommunications and Radio Engineering, Vol.55, 2001, issue 3
A. A. Lavrinovich, A. I. Gubin, Nikolay T. Cherpak
PROCESS OF FORMATION OF SPHEROIDAL GOLD PARTICLES AND OF NANOPHASES IN AlN−TiB2−TiSi2 COATINGS AFTER ANNEALING WITH SUBSEQUENT IMPLANTATION
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.19, 2015, issue 2
Katerina Smyrnova, Konrad Kierczynski, Yoshihiko Takeda, Anatoliy Kupchishin, Henryk Komsta, Hiroshi Amekura, Marek Opielak, Bahyt Zhollybekov, Artem Demianenko