Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Print: 0040-2508
ISSN Online: 1943-6009

Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v76.i15.30
pages 1339-1358


Yu. P. Galuk
St. Petersburg State University, 35 University Ave., St. Petersburg, Peterhoff, 198504 Russia
A. P. Nickolaenko
O.Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkiv 61085, Ukraine
Masashi Hayakawa
Hayakawa Institute of Seismo Electromagnetics Co. Ltd.(Hi-SEM), The University of Electro-Communications (UEC) Alliance Center #521, Advanced & Wireless and Communications Research Center, UEC, Chofu, Tokyo, 182-8585, Japan


Accounting for the actual structure of the lower ionosphere in the global electromagnetic (Schumann) resonance problem is an important and urgent task. The paper analyzes an impact of deviations in the vertical profile of atmosphere conductivity at the night and the day hemispheres on the spatial distribution of electromagnetic field in the Schumann resonance band. The cavity characteristics depend on the atmosphere conductivity profiles, and these are accounted for by using the full wave solution at the day and the night sides of the globe. The electromagnetic problem in a non-uniform cavity is solved with the help of 2D telegraph equation. The displacement of the amplitude maximum of the electric field component from the source geometric antipode is demonstrated at several frequencies for different locations of the field source, and the models are used of the sharp and the smooth day–night transition. We demonstrate that the day-night non-uniformity shifts the antipodal maximum of the vertical electric field amplitude from the source geometric antipode toward the center of the day hemisphere by a distance reaching 300 km.