Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Print: 0040-2508
ISSN Online: 1943-6009

Volumes:
Volume 79, 2020 Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v79.i6.40
pages 493-508

THE DYNAMICS OF AUTODYNE SIGNAL AND NOISE CHARACTERISTIC FORMATION AT HIGH TARGET SPEEDS

V. Ya. Noskov
Ural Federal University (UrFU), 19, Mira St., Ekaterinburg, 620002, Russia
K. A. Ignatkov
Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russia
Kirill D. Shaidurov
Ural Federal University, Mira 19, Ekaterinburg, 620002, Russia
G. P. Ermak
O.Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine, 12, Academician Proskura St., Kharkiv 61085, Ukraine
A. S. Vasiliev
A.Ya. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine, 12, Academician Proskura St., Kharkiv 61085

ABSTRACT

The analysis of the characteristics of an autodyne under the influence of its own radiation reflected from a target and the internal noise of an oscillator is presented. The general case of the dynamics of signal and noise characteristic formation is studied in terms of the distance to the target and the speed for an arbitrary ratio of the delay time of the radiation reflected from a target and the autodyne response period. The periodic non-stationarity of the mean-square value of the level of phase, frequency and amplitude noise with a change in the distance to a target is established. This phenomenon is observed with an increase in the level of reflected radiation and the distance to the target, when the magnitude of the autodyne system's external feedback parameter is comparable with unity. It is shown that with a negligible delay time of the radiation reflected from the target as compared with the autodyne response period, the formation of noise characteristics occurs in the form of peaks in the vicinity of the maximum slope of the autodyne's phase characteristic. At high target speeds, when the autodyne response period and the delay time of the radiation reflected from the target are comparable, periodic unsteadiness of the noise persists; however, the formation of noise characteristics occurs smoothly, without peaks. The results of experimental studies obtained for a hybrid integrated oscillator on a Gunn diode confirm the conclusions of the theoretical analysis.

REFERENCES

  1. Hinman, W.S. and Brunetti, C., (1946) Radio Proximity Fuze Design, Part of Journal of Research of the National Bureau of Standards, 37(RP1723), 13 p. https://nvlpubs.nist.gov/nistpubs/jres/37/jresv37 n1p1_A1b.pdf.

  2. Pantoja, F.R. and Calazans, E.T., (1985) Theoretical and experimental studies of gain compression of millimeter-wave self-oscillating mixers, IEEE Trans. Microwave Theory Tech., 33(3), pp. 181-186. DOI: 10.1109/TMTT.1985.1132979.

  3. Claassen, M., (1994) Self-Mixing Oscillators, In: Luy JF., Russer P. (eds.), Silicon-Based Millimeter-Wave Devices, Springer Series in Electronics and Photonics, 32, Springer, Berlin, Heidelberg, pp. 215-239. DOI: https://doi.org/10.1007/978-3-642-79031-7_6.

  4. Nygren, T. and Sjolund, A., (1974) Sensitivity of Doppler radar with self-detecting diode oscillators, IEEE Trans. Microwave Theory Tech., 22(5), pp. 494-498. DOI: 10.1109/TMTT.1974.1128268.

  5. Nagano, S. and Akaiwa, Y., (1971) Behavior of a Gunn diode oscillator with a moving reflector as a self-excited mixer and a load variation detector, IEEE Trans. Microwave Theory Tech., 19(2), pp. 906-910. DOI: 10.1109/TMTT.1971.6373339.

  6. Takayama, Y., (1973) Doppler signal detection with negative resistance diode oscillators, IEEE Trans. Microwave Theory Tech., 21(2), pp. 89-94, DOI: 10.1109/TMTT.1973.1127929.

  7. Kittipute, K., Saratayon, P., Srisook, S., and Wardkein, P., (2017) Homodyne detection of short-range Doppler radar using a forced oscillator model, Scientific Reports, 7, Article number: 43680. DOI: 10.1038/srep43680.

  8. Komarov, I.V. and Smolskiy, S.M., (2003) Fundamentals of Short-Range FM Radar, Artech House, Norwood, MA, USA, 314 p.

  9. Votoropin, S.D., Zakarlyuk, N.M., Noskov, V.Ya., and Smolskiy, S.M., (2007) On principal impossibility of auto-synchronization of an autodyne by radiation reflected from a moving target, Russian Physics Journal, 50(9), pp. 195-206, (in Russian) DOI: 10.1007/s11182-007-0132-2.

  10. Usanov, D.A., Skripal, Al.V., Skripal, An.V., and Postelga, A.E., (2004) A microwave autodyne meter of vibration parameters, Instruments and Experimental Techniques, 47(5), pp. 689-693. DOI: 10.1023/B:INET.0000043882.16801.3a.

  11. Alidoost, S.A., Sadeghzade, R., and Fatemi, R., (2010) Autodyne system with a single antenna, 11th International Radar Symposium (IRS-2010), Vilnius, Lithuania, 2, pp. 406-409.

  12. Usanov, D.A. and Postelga, A.E., (2011) Reconstruction of complicated movement of part of the human body using radio wave autodyne signal, Biomedical Engineering, 45(1), pp. 6-8. DOI: 10.1007/s10527-011-9198-9.

  13. Ermak, G.P., Popov, I.V., Vasiliev, A.S., Varavin, A.V., Noskov, V.Ya., and Ignatkov, K.A., (2012) Radar sensors for hump yard and rail crossing applications, Telecommunications and Radio Engineering, 71(6), pp. 567-580. DOI: 10.1615/TelecomRadEng.v71.i6.80.

  14. Kim, S., Kim, B.-H., Yook, J.-G., and Yun, G.-H., (2016) Proximity vital sign sensor using self- oscillating mixer, URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), pp. 1446-1448. DOI: 10.1109/URSIAP-RASC.2016.7601402.

  15. Vetrova, Iu.V., Doroshenko, A.A., Postelga, A.E., and Usanov, D.A., (2019) Remote control of the surface movement of an object using a two-channel SHF autodyne generator, Journal of Communications Technology and Electronics, 64(4), pp. 409-416, DOI: 10.1134/S1064226919040119.

  16. Lushev, V.P., Votoropin, S.D., Deriabin, Yu.N. et al., (2005) Microwave autodyne moving sensors for measurement of burning speed of high-energy composite materials, 15th International Crimean Conference "Microwave & Telecommunication Technology", Sevastopol, Ukraine, 2, pp. 831-833. DOI: 10.1109/CRMIC0.2005.1565160.

  17. Usanov, D.A., Scripal, Al.V., and Scripal, An.V., (2003) Physics of Semiconductor RF and Optical Autodynes, Saratov, Russia: Saratov University Publisher, (in Russian).

  18. Gupta, M-S., Lomax, R.J., and Haddad G.I., (1974) Noise consideration in self-mixing IMPATT- diode oscillators for short-range Doppler radar applications, IEEE Transactions on Microwave Theory and Techniques., 22(1), pp. 37-43, DOI: 10.1109/TMTT.1974.1128158.

  19. Nygren, T. and Sjolund, A., (1974) Sensitivity of Doppler radar with self-detecting diode oscillators, IEEE Transactions on Microwave Theory and Techniques, 22(5), pp. 494-498, DOI: 10.1109/TMTT.1974.1128268.

  20. Noskov, V.Ya. and Ignatkov, K.A., (2013) Peculiarities of noise characteristics of autodynes under strong external feedback, Russian Physics Journal, 56(12), pp. 1445-1460. DOI: 10.1007/s11182- 014-0198-6, (in Russian).

  21. Noskov, V.Ya., Ignatkov, K.A., Chupahin, A.P., Vasiliev, A.S., Ermak, G.P., and Smolskiy, S.M., (2017) Signals of autodyne sensors with sinusoidal frequency modulation, Radioengineering, 26(4), pp. 1182-1190. DOI: 10.13164/re.2017.1182, (in Russian).

  22. Noskov, V.Ya. and Ignatkov, K.A., (2016) Noise characteristics of autodynes with frequency stabilization by means of an external high-Q cavity, Journal of Communications Technology and Electronics, 61(9), pp. 1052-1063. DOI: 10.1134/S1064226916090102.

  23. Noskov, V.Ya. and Smolskiy, S.M., (2009) Devices for autodyne signals registration in Gunn diode oscillators, 19-th International Crimean Conference "Microwave & Telecommunication Technology", Sevastopol, Ukraine, 2, pp. 809-812.

  24. Noskov, V.Ya., Smolskiy, S.M., Ignatkov, K.A., and Chupahin, A.P., (2017) Features of autodyne signal formation with external detector, Telecommunications and Radio Engineering, 76(16), pp. 1463-1475. DOI: 10.1615/TelecomRadEng.v76.i16.60.

  25. Noskov, V.Ya., Smolskiy, S.M., Ignatkov, K.A., Mishin, D.Ya., and Chupahin, A.P., (2019) Modern hybrid-integrated autodyne oscillators of microwave and mm-wave ranges and its' application, Part 11, Fundamentals of autodyne implementation, Successes of Modern Electronic Engineering, 2, pp. 5-13, (in Russian), DOI: 10.18127/j20700784-201902-01.

  26. Kurokava, K., (1973) Injection locking of microwave solid-state oscillators, Proceedings of the IEEE, 61(10), pp. 1386-1410, DOI: 10.1109/PROC.1973.9293.

  27. Noskov, V.Ya. and Ignatkov, K.A., (2013) Autodyne signals in case of random delay time of the reflected radiation, Telecommunications and Radio Engineering, 72(16), pp. 1521-1536, DOI: 10.1615/TelecomRadEng.v72.i16.70.

  28. Noskov, V.Ya. and Ignatkov, K.A., (2013) Dynamic autodyne and modulation characteristics of microwave oscillators, Telecommunications and Radio Engineering, 72(10), pp. 919-934, DOI: 10.1615/TelecomRadEng.v72.i10.70.

  29. Makharinsky S.V. and Minakova I.I., (1973) Equivalent Q-factor method for research of multi-circuit self-oscillating systems, University News. Radiophysics, 16(6), pp. 903-908, (in Russian).


Articles with similar content:

SIGNALS FROM DISTRIBUTED TARGETS OF AUTODYNE SRR WITH PULSE AMPLITUDE MODULATION
Telecommunications and Radio Engineering, Vol.76, 2017, issue 13
S. M. Smolskiy, K. A. Ignatkov, G. P. Ermak, A. V. Fateev, A. P. Chupahin, V. Ya. Noskov
OUTPUT, SIGNAL AND NOISE PARAMETERS OF AUTODYNES WITH A RIGID CONDUCTANCE CHARACTERISTIC OF AN ACTIVE ELEMENT
Telecommunications and Radio Engineering, Vol.75, 2016, issue 20
S. M. Smolskiy, D.Ya. Mishin, K. A. Ignatkov, G. P. Ermak, A. P. Chupahin, A.V. Vasiliev, V. Ya. Noskov
PARAMETERS' CALCULATION OF AUTODYNE SENSORS TAKING INTO ACCOUNT THE NOISE OF THE POWER SOURCE
Telecommunications and Radio Engineering, Vol.75, 2016, issue 5
K. A. Ignatkov, G. P. Ermak, A. P. Chupahin, A. S. Vasilev, V. Ya. Noskov
NOISE RADAR WITH SYNTHESIZING A SPECTRUM OF SOUNDING SIGNAL
Telecommunications and Radio Engineering, Vol.70, 2011, issue 10
V. P. Palamarchuk, A. V. Kravchuk, K. A. Lukin, Anatoly Mogyla, B. S. Cherniy
REVERSE MONTE CARLO SIMULATIONS OF LIGHT PULSE PROPAGATION IN NONHOMOGENEOUS MEDIA - PART II: NUMERICAL SIMULATIONS
ICHMT DIGITAL LIBRARY ONLINE, Vol.16, 2004, issue
Pei-Feng Hsu, Xiaodong Lu