Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Telecommunications and Radio Engineering

ISSN Print: 0040-2508
ISSN Online: 1943-6009

Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v51.i2-3.70
pages 85-92

Radio Meteorological Parameters Determining Microwave Radio Propagation over the Ocean and their Measurement Techniques

M. V. Belobrova
A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine
V. K. Ivanov
O.Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkiv 61085, Ukraine
A. N. Koshel
I. E. Ostrovsky
I. M. Fuks
University of Colorado/CIRES and NOAA/ERL/ETL 325, Broadway, Boulder, CO 80305-3328, USA


The data of refractive index measurements are used to calculate the heights H0 and "M- deficits" of surface ducts over the sea, as well as structure constants CN, and axial ratio α of refractive index inhomogeneities determining the attenuation of microwave signals propagating over the sea surface. The variability of these parameters with the geographic region and year season is estimated.
The possibility of estimating these radio meteorological parameters from the data of standard hydro-meteorological measurements has been tested using the Monin-Obukhov theory for the atmospheric boundary layer. It is shown that the results of such calculations reasonably correlate with the refractometry data, (the axial ratio α except), in the case ωηεν the universal constant αe of the Monin-Obukhov theory is equal to 300.