Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Telecommunications and Radio Engineering

ISSN Print: 0040-2508
ISSN Online: 1943-6009

Volumes:
Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v73.i13.10
pages 1125-1139

APPROACHES TO AUTOMATIC DATA PROCESSING IN HYPERSPECTRAL REMOTE SENSING

V. V. Lukin
National Aerospace University, Kharkiv, Ukraine
S. K. Abramov
Department of Transmitters, Receivers and Signal Processing, National Aerospace University (Kharkov Aviation Institute), Kharkiv, Ukraine
N. N. Ponomarenko
National Aerospace University, Kharkiv, Ukraine
S. S. Krivenko
Dept 504, National Aerospace University, 17 Chkalova Str., 61070, Kharkiv, Ukraine
M. L. Uss
National Aerospace University (Kharkov Aviation Institute), 17, Chkalov St., Kharkov, 61070
Benoit Vozel
University of Rennes I − Enssat, Lannion, France
Kacem Chehdi
University of Rennes I, 6, Rue de Kerampont, 22 305 Lannion cedex, BP 80518, France
Karen O. Egiazarian
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland
J. T. Astola
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland

ABSTRACT

In hyperspectral imaging, one has to deal with huge amount of data at different stages of their processing both on-board and on-land. Due to this, high degree of automation is required. The paper deals with considering new approaches and trends in design and use of methods and algorithms for automatic processing of hyperspectral data. Blind estimation of noise parameters is the first step. Then the obtained estimates are to be used at stages of image filtering and compression. Several strategies for doing this are considered. Their advantages and drawbacks are discussed. Examples of real-life data processing are presented.