Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Journal of Environmental Pathology, Toxicology and Oncology
IF: 1.241 5-Year IF: 1.349 SJR: 0.519 SNIP: 0.613 CiteScore™: 1.61

ISSN Print: 0731-8898
ISSN Online: 2162-6537

Journal of Environmental Pathology, Toxicology and Oncology

DOI: 10.1615/JEnvPathToxOncol.v23.i3.50
12 pages

Prevention and Repair of DNA Damage by Selected Phytochemicals as Measured by Single Cell Gel Electrophoresis

Sutapa Chakraborty
Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, Kolkata, India
Madhumita Roy
Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, Calcutta, India
Rathindra Kumar Bhattacharya
Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026

ABSTRACT

We assessed the ability of some natural products−namely, curcumin, resveratrol, indole-3-carbinol, and ellagic acid−to modify the DNA damaging ability of the alkylating carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in cultured Chinese hamster lung fibroblast cells (CH V-79). MNNG produced DNA single strand breaks in a dose- and time-dependent manner, as observed by increase in the tail moments of the comet, when the cells were subjected to alkaline single cell gel electrophoresis. When the cells were treated in the presence of each of the natural compounds, the DNA damage caused by MNNG was considerably reduced. This effect was found to be dose related. Preincubation of cells with each of these compounds individually afforded significant protection to DNA against damage caused by subsequent treatment with MNNG, indicating a true chemopreventive role of these substances. The most remarkable aspect of the present study was that all four compounds helped in the recovery of DNA damage by accelerating DNA repair efficiency in the damaged cells. This was further substantiated by the observation on unscheduled DNA synthesis. Our results suggest that these agents are chemopreventive by virtue of their ability to protect DNA as well as to induce DNA repair.


Articles with similar content:

Evaluation of Radioprotective Action of Compounds Using Saccharomyces cerevisiae
Journal of Environmental Pathology, Toxicology and Oncology, Vol.23, 2004, issue 2
Bishnavath K. Chourasia, Purva Nemavarkar, Karpagam Pasupathy
Biochanin A Enhances the Radiotoxicity in Colon Tumor Cells In Vitro
Journal of Environmental Pathology, Toxicology and Oncology, Vol.32, 2013, issue 3
Reeta Tiwari, Abhay Puthli, Kaushala Prasad Mishra
Autophagy Inhibition Enhances SPCA-1 Cell Proliferation Inhibition Induced by By-1 from the Stout Camphor Medicinal Mushroom, Taiwanofungus camphoratus (Agaricomycetes)
International Journal of Medicinal Mushrooms, Vol.20, 2018, issue 4
Di Wu, Wenbo Sun, Yanfang Liu, Yaping Zhang, Yan Yang, Henan Zhang, Li Min, Hairui Yang, Zheng Qiankun, Wei Jia, Wenhan Wang, Jinsong Zhang
Stable Water Clusters−Mediated Molecular Alterations in Human Melanoma Cell Lines
Forum on Immunopathological Diseases and Therapeutics, Vol.3, 2012, issue 3-4
Stavroula Baritaki, Benjamin Bonavida
Antitumor Effect of By-1 from Spent Broth from Submerged Cultures of Stout Camphor Medicinal Mushroom, Taiwanofungus camphoratus (Higher Basidiomycetes), on A549 Adenocarcinoma Cells
International Journal of Medicinal Mushrooms, Vol.19, 2017, issue 3
Jing-Song Zhang, Wei Jia, Wenhan Wang, Hua Fan, Hai-Rui Yang, Xiang-Li Zhao, Ya-Ping Zhang, Li-Yuan Wang, He-Nan Zhang