Library Subscription: Guest
Nanoscience and Technology: An International Journal

Published 4 issues per year

ISSN Print: 2572-4258

ISSN Online: 2572-4266

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.7 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.11 SJR: 0.244 SNIP: 0.521 CiteScore™:: 3.6 H-Index: 14

Indexed in

MODELING OF SUBGRAIN’S CRYSTALLOGRAPHIC MISORIENTATION DISTRIBUTION

Volume 9, Issue 4, 2018, pp. 283-297
DOI: 10.1615/NanoSciTechnolIntJ.2018027157
Get accessGet access

ABSTRACT

At present the actual task of various industries is to create products from metal polycrystals and their alloys with the required properties and characteristics. The processing of such products is generally carried out with intense elastoplastic deformation, and is often accompanied by temperature effects. At the same time, the structure of materials undergoes substantial rearrangements, which leads to a significant change in their properties. An effective tool for solving the problem of creating products with the necessary characteristics is the use of multilevel elastoplastic models that allow one to investigate the internal structure of a material in numerical experiments. In the developed two-level statistical model of inelastic deformation, there is the problem of selecting (forming) heterogeneous elements (subgrains) in the initially approximately homogeneous grain. The main source of inhomogeneity is the appearance of crystallographic misorientation of parts (subgrains) of the original grains with respect to one another. The paper considers the problem of determining the orientation of subgrains in the initial stages of inelastic deformation. The mechanism of formation of incidental cell boundaries as a consequence of the appearance of dislocation walls is considered. The method to model boundaries of this type is proposed. In the reference configuration of deformation, flat sections of the cell boundaries (facets) are randomly assigned according to the uniform law. It is supposed that some of mobile dislocations "settle" on the prescribed incidental boundaries. It is shown that due to the appearance of cell boundaries the angle of the subgrain's crystallographic misorientation is proportional to the dislocation shears in the grain. Calculations are made of the uniaxial stretching of a copper polycrystal. Satisfactory agreement between numerical results of the subgrains misorientation distribution with respect to the initial grain and experimental data is shown. The model also makes it possible to take into account the decrease in the number of active slip systems in subgrains during rotation.

CITED BY
  1. Kondratev N. S., Trusov P. V., Makarevich E. S., Determination of the grain boundary facets orientation in new recrystallized grains, 2051, 2018. Crossref

  2. Trusov P. V., Shveykin A. I., Kondratyev N. S., Yants A. Yu., Multilevel Models in Physical Mesomechanics of Metals and Alloys: Results and Prospects, Physical Mesomechanics, 24, 4, 2021. Crossref

  3. Kondratev Nikita, Trusov Peter, Podsedertsev Andrej, Baldin Matvej, Subgrain Coalescence Simulation by Means of an Advanced Statistical Model of Inelastic Deformation, Materials, 15, 15, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain