Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Print: 2150-766X
ISSN Online: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v6.i2.30
pages 171-180

WHY AND HOW TYPE OF PASSIVATION LAYER AFFECTS THE PROPERTIES OF ALUMINUM NANOPOWDERS FOR ENERGETIC APPLICATIONS

Alexander Gromov
Fraunhofer Institute for Chemical Technology, D-76327 Pfinztal (Berghausen), Germany
Ulrich Forter-Barth
Fraunhofer Institute for Chemical Technology, D-76327 Pfinztal (Berghausen), Germany
Ulrich Teipel
Nuremberg University of Technology Georg-Simon-Ohm, 90121, Nuremberg, Germany

ABSTRACT

Results of DTA-TG-investigations and chemical analysis of electro-exploded aluminum nanopowders, coated and/or passivated by the reactive reagents: nitrocellulose (NC), ethanol, Teflon, oleic (C17H33COOH) and stearic (C17H35COOH) acid, amorphous boron, nickel, air, and ALEX (for comparison) are shown. The disadvantages of aluminum nanopowders, passivated by air and covered by a thick oxide layer, which affects adversely their energetic properties, are their low metal content and their low stability to further oxidation during storage. Non-oxide coatings, i.e., aluminum nanopowders with a protecting surface are expected to have improved material properties. The kinetics of the interaction of aluminum nanopowders with nitrogen, air, and in water are described.


Articles with similar content:

AGGLOMERATION AND IGNITION OF ALUMINUM PARTICLES COATED BY NICKEL
International Journal of Energetic Materials and Chemical Propulsion, Vol.6, 2007, issue 2
Alon Gany, Valery Rosenband
FUEL-RICH ALUMINUM−METAL FLUORIDE THERMITES
International Journal of Energetic Materials and Chemical Propulsion, Vol.16, 2017, issue 1
Mirko Schoenitz, Siva Kumar Valluri, Edward L. Dreizin, Ian Monk
FORMATION OF PYROPHORIC IRON PARTICLES BY H2 REDUCTION OF OXALATE AND OXIDES
International Journal of Energetic Materials and Chemical Propulsion, Vol.7, 2008, issue 2
Rajesh V. Shende, Deepak Kapoor, Darold Martin, Zachary D. Doorenbos, Alok Vats, Jan A. Puszynski
INFLUENCE OF MODIFYING ADDITIVES ON THE PHASE STABILITY AND RESISTANCE TO OXIDATION OF COATINGS BASED ON STABILIZED ZIRCONIUM DIOXIDE AND A CARBON−CARBON COMPOSITE MATERIAL
Nanoscience and Technology: An International Journal, Vol.7, 2016, issue 4
D. Yu. Sinitsyn, V. N. Anikin, S. A. Eremin, B. V. Ryabenko
BOILER FUEL AS A RECYCLING OPTION FOR ENERGETIC MATERIALS
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
Joel Lipkin, Larry L. Baxter, Devang Shah, Gian Sclippa, Sid Huey, James Ross