Library Subscription: Guest
International Journal of Energetic Materials and Chemical Propulsion

Published 6 issues per year

ISSN Print: 2150-766X

ISSN Online: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

ANALYSIS OF THERMOPLASTIC PROPELLANTS AND THEIR INGREDIENTS WITH DSC AND TGA

Volume 8, Issue 2, 2009, pp. 81-97
DOI: 10.1615/IntJEnergeticMaterialsChemProp.v8.i2.10
Get accessGet access

ABSTRACT

The goal of this paper is to study the thermal behavior of thermoplastic rocket propellants. Thermal decomposition of some thermoplastic propellant compositions (based on polyvinyl chloride, ammonium perchlorate, and aluminum and potassium nitrate) and their ingredients has been examined. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) have been applied for this. The results obtained for propellants have been compared with those obtained for their ingredients. All examined propellants underwent thermal decomposition in two exothermic steps, after a slow endothermic reaction in the beginning. The addition of aluminum did not change this trend, while the addition of potassium nitrate had significant influence on it and exothermic reactions were running in three steps. Special attention was devoted to specific heats' determination of propellant compositions and their ingredients, and obtained results were compared with calculated ones.

REFERENCES
  1. Sinditskii, V.P., Egorshev, V.Y., Leveshenkov A.I., and Berezin M.V., Physical and Chemical Processes Governing the Combustion of Binary Compositions of Ammonium Dinitramide with Glycidylazidepolymer.

  2. Caro, R.I., Bellerby, J.M., and Kronfli, E., Synthesis and Characterization of a Hydroxyl Terminated Polyether (HTPE) Copolymer for Use as a Binder in Composite Propellants.

  3. Markowitz, M.M. and Boryta, D.A., Some Aspects of the Crystallographic Transition of AP.

  4. Taylor, R.E., and Stark, J.A., Determination of Thermal Transport Properties in Ammonium Perchlorat.

  5. Guirao, C. and Williams, F.A., A Model for Ammonium Perchlorate Deflagration Between 20 and 100 atm.

  6. Chase, Jr., M.W., NIST-JANAF Thermochemical Tables, 4th Edition.

  7. Zanotti, C., Volpi, A., Bianchessi, M., and DeLuca, L., Measuring Thermodynamic Properties of Burning Propellants.

  8. Perry, R.H. and Chilton, C.H., Chemical Engineer’s Handbook, 5th Edition.

  9. Bozic, V.S., Milos, M.V., Blagojevic, D.D., and Krakovsky, I., Thermal Decomposition Studies of Some Ingredients Applied in Thermoplastic Composite Propellants Based on Modified PVC Binder.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain