Library Subscription: Guest
International Journal of Energetic Materials and Chemical Propulsion

Published 6 issues per year

ISSN Print: 2150-766X

ISSN Online: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

THE SENSITIVITY OF CHEMICAL KINETICS WITH TWO CHARACTERISTIC LENGTHS OF DETONATION DYNAMICS IN HOMOGENEOUS GASES

Volume 14, Issue 6, 2015, pp. 499-517
DOI: 10.1615/IntJEnergeticMaterialsChemProp.2015011224
Get accessGet access

ABSTRACT

This work discusses the sensitivity of chemical kinetics with two characteristic lengths of detonation dynamics calculated with a steady, weakly diverging, reaction-zone model. These are the chemical lengths defined as the distance from the detonation leading shock to the inflection point of the temperature profile and the minimum radius for the existence of a self-sustained, spherically diverging detonation. Two detailed chemical kinetic mechanisms are implemented in the model to estimate the characteristic lengths for H2/O2 and H2/air mixtures at different equivalence ratios and initial pressures. A high sensitivity to the chemical kinetic scheme is obtained, with discrepancies ranging from 20% to 80%. Calculated and measured critical radii are found to be of the same order, which supports the premise of this work to assess sensitivity from a hydrodynamic model rather than from unsteady 3D simulations. Nevertheless, the differences are very important, especially at higher initial pressures. Importantly, these large differences from one scheme to the other are of the same order as between experimental data themselves. The same high sensitivity should thus be expected from numerical simulations and, therefore, chemical kinetics requires proper calibration in a large range of initial pressures to reproduce experimentally observed detonation dynamics. The predictive ability of simulations should be considered with caution, especially if detailed chemical kinetic schemes are implemented. Detonation studies should remain driven by experiments and sound dimensional analysis. More fundamental work aimed at improving high-pressure, high-temperature chemical kinetics is necessary before simulation can be used as an effective design tool for detonation-based propulsive devices such as pulsed or rotating detonation engines.

CITED BY
  1. Quintens H., Strozzi C., Zitoun R., Bellenoue M., Deflagration/Autoignition/Detonation Transition Induced by Flame Propagation in an N-Decane/O2 /Ar Mixture, Flow, Turbulence and Combustion, 102, 3, 2019. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain