Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.28 SNIP: 0.421 CiteScore™: 0.9

ISSN Print: 2150-766X
ISSN Online: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v6.i5.20
pages 551-573

COMBUSTION BEHAVIOR AND FLAME STRUCTURE OF NITROMETHANE

J. Eric Boyer
The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Kenneth K. Kuo
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA

ABSTRACT

Better knowledge of nitromethane (CH3NO2) flame structure and combustion behavior is desirable for a number of possible propulsion applications, both earth-based and extraterrestrial. When considered for rocket applications, nitromethane monopropellant is more energetic and less toxic than some current storable monopropellants such as hydrazine, though shock sensitivity questions still remain. In this investigation, the combustion behavior of nitromethane was studied using a variety of experimental and theoretical techniques over a broad range of pressures from 2.5 to 170 MPa. Its burning rates at different pressures were measured in quartz tubes and at a free surface, and found to fall into 3 regimes. At low pressures (4 to 6 MPa), temperature profile measurements using fine-wire thermocouples showed a thick thermal wave in the liquid subsurface, extremely thin flame zone, and final flame temperature of near 2,100 K, significantly less than the equilibrium value of 2,460 K. A model was formulated that included both gas-phase and condensed-phase processes. Using the detailed reaction mechanism for nitromethane developed by Yetter and Rabitz coupled with the CHEMKIN code, flame structure was calculated and compared to observations and measured values. Significant differences were found; however, with the modification of kinetic parameters in two elementary reactions, the measured temperature trace was duplicated.


Articles with similar content:

OVERTONE ABSORPTION SPECTROSCOPY OF SOLID PROPELLANT FLAMES: CO AND N2O CONCENTRATIONS
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
S. H. Modiano, M. W. Teague, B. E. Homan, J. A. Vanderhoff
COMBUSTION CHARACTERISTICS OF SOLID PROPELLANTS IN A VACUUM
International Journal of Energetic Materials and Chemical Propulsion, Vol.8, 2009, issue 3
Masafumi Tanaka, Yasukazu Seki, Katsuya Urakawa, Munenori Tanaka
COMBUSTION PHENOMENA OF THE GUN PROPELLANT JA2
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
Volker Weiser, Stefan Kelzenberg, Thomas Fischer, Wilhelm Eckl, Norbert Eisenreich, Gesa Langer
BALLISTIC AND COMBUSTION PROPERTIES OF HIGH-PRESSURE EXPONENT HYDROCARBON-BASED FUEL-RICH PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
Gideon J. van Zyl
COMBUSTION AND PERFORMANCE STUDIES OF GLYCIDYL AZIDE POLYMER AND ITS MIXTURES AS HYBRID ROCKET FUEL
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 3
Motoyasu Kimura, Hideo Nakayama, Akshay Garg, Po-Jul Chang, Keiichi Hori, Yutaka Wada