Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Journal of Long-Term Effects of Medical Implants
SJR: 0.332 SNIP: 0.491 CiteScore™: 0.89

ISSN Print: 1050-6934
ISSN Online: 1940-4379

Journal of Long-Term Effects of Medical Implants

DOI: 10.1615/JLongTermEffMedImplants.v20.i4.60
pages 317-326

Novel Calcium Sulfate Space-Making Devices for Bone Regeneration: A Pilot Study

Mark V. Thomas
Department of Oral Health Practice, University of Kentucky College of Dentistry, Department of Oral Health Research
J. Clemens
Perimeter Periodontics, Lexington, Kentucky
David A. Puleo
Center for Biomedical Engineering, Wenner-Gren Lab, University of Kentucky, Lexington, Kentucky


The feasibility of using preformed calcium sulfate (CS) space-making devices (SMDs) for bone regeneration was explored using a rabbit calvarial model. Twenty-four CS devices were fabricated. Twelve of these were SMDs, which consisted of a domed head that served as the actual space-maker, and a stalk or "tail" portion used to affix the device to the bone. A second set of control devices (CDs) was fabricated that consisted of only the tail portion. CDs were made of medical-grade CS, as were 9 of the SMDs. Six of the CS SMDs were loaded with high or low concentrations of simvastatin. The remaining 3 SMDs were made of a CS/bioactive glass composite. One SMD and 1 CD were implanted bilaterally in the parietal bones of 12 New Zealand White rabbits, which were euthanized 8 weeks following surgery. All implants were well tolerated. In all animals, the side receiving the SMD exhibited greater thickness than did the control sites. The addition of simvastatin resulted in a statistically significant difference in calvarial thickness. The CS/bioactive glass composite also yielded encouraging results. The CS resorbable SMDs are worthy of further investigation.