Library Subscription: Guest
Home Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Immunology

Impact factor: 3.857

ISSN Print: 1040-8401
ISSN Online: 2162-6472

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.v31.i1.40
pages 43-52

Regulation of NK Cell Repertoire and Function in the Liver

Peter D. Krueger
Department of Microbiology; Beirne Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA 22908
Matthew G. Lassen
Department of Microbiology; Beirne Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA 22908
Huihong Qiao
Department of Microbiology; Beirne Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA 22908
Young S. Hahn
University of Virginia School of Medicine

ABSTRACT

NK cells represent a large proportion of the lymphocyte population in the liver and are involved in early innate immunity to pathogen infection. As a result of liver endothelial cell fenestrations, parenchymal cells are not separated by a basal membrane, and thereby pathogen-infected hepatocytes are extensively capable of interacting with innate immune cells including NK cells. In addition, hepatic NK cells interact with surrounding DC and alter their differentiation and function. Recent studies reveal that NK cells exhibit a regulatory function that modulates T cell responses through their interaction with DC and/or direct effect on T cells. Thus, NK cells play a central role, not only in innate immunity, but also in shaping the adaptive immune response. During pathogen infection, there is a remarkable increase of hepatic NK cells, possibly due to the expansion of resident liver NK cells and/or recruitement of NK cells from the blood. The liver microenvironment is believed to modulate hepatic NK cell function through the induction of activating/inhibitory receptor expression and inflammatory cytokine secretion. Particularly, the liver maintains intrahepatic NK cells in a functionally hyporesponsive state compared to splenic NK cells: liver NK cells displayed a dampened IFN-γ response to IL-12/IL-18 stimulation. Notably, the liver contains a significant population of functionally hyporesponsive NK cells that express high levels of the inhibitory receptor NKG2A and lack expression of MHC class I-binding Ly49 receptors. Importantly, adoptively transferred splenic NK cells that migrate to the liver displayed phenotypic and functional changes, supporting a view that the liver environment modifies NK cell receptor expression and functional responsiveness. In this article, we will review studies on the regulation of NK cell repertoire and function in the hepatic environment and the impact of liver NK cell immunoregulatory function on influencing adaptive immunity.