Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Immunology

Impact factor: 3.698

ISSN Print: 1040-8401
ISSN Online: 2162-6472

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.v31.i6.30
pages 475-530

Regulation of Mast Cell Responses in Health and Disease

Alasdair M. Gilfillan
Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Healthesda
Michael A. Beaven
Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD

ABSTRACT

Mast cells are multifunctional cells that initiate not only IgE-dependent allergic diseases but also play a fundamental role in innate and adaptive immune responses to microbial infection. They are also thought to play a role in angiogenesis, tissue remodeling, wound healing, and tumor repression or growth. The broad scope of these physiologic and pathologic roles illustrates the flexible nature of mast cells, which is enabled in part by their phenotypic adaptability to different tissue microenvironments and their ability to generate and release a diverse array of bioactive mediators in response to multiple types of cell-surface and cytosolic receptors. There is increasing evidence from studies in cell cultures that release of these mediators can be selectively modulated depending on the types or groups of receptors activated. The intent of this review is to foster interest in the interplay among mast cell receptors to help understand the underlying mechanisms for each of the immunological and non-immunological functions attributed to mast cells. The second intent of this review is to assess the pathophysiologic roles of mast cells and their products in health and disease. Although mast cells have a sufficient repertoire of bioactive mediators to mount effective innate and adaptive defense mechanisms against invading microorganisms, these same mediators can adversely affect surrounding tissues in the host, resulting in autoimmune disease as well as allergic disorders.