Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Immunology
IF: 1.352 5-Year IF: 3.347 SJR: 0.657 SNIP: 0.55 CiteScore™: 2.19

ISSN Print: 1040-8401
ISSN Online: 2162-6472

Volumes:
Volume 40, 2020 Volume 39, 2019 Volume 38, 2018 Volume 37, 2017 Volume 36, 2016 Volume 35, 2015 Volume 34, 2014 Volume 33, 2013 Volume 32, 2012 Volume 31, 2011 Volume 30, 2010 Volume 29, 2009 Volume 28, 2008 Volume 27, 2007 Volume 26, 2006 Volume 25, 2005 Volume 24, 2004 Volume 23, 2003 Volume 22, 2002 Volume 21, 2001 Volume 20, 2000 Volume 19, 1999 Volume 18, 1998 Volume 17, 1997 Volume 16, 1996 Volume 15, 1995 Volume 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.v17.i3-4.10
pages 225-283

Regulatory Functions of Phospholipase A2

Makoto Murakami
Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan
Yoshihito Nakatani
Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan
Gen-ichi Atsumi
Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan
Keizo Inoue
Department of Health Chemistry, Faculty of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
Ichiro Kudo
Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan

ABSTRACT

Phospholipase A2 (PLA2) plays crucial roles in diverse cellular responses, including phospholipid digestion and metabolism, host defense and signal transduction. PLA2 provides precursors for generation of eicosanoids, such as prostaglandins (PGs) and leukotrienes (LTs), when the cleaved fatty acid is arachidonic acid, platelet-activating factor (PAF) when the sn-1 position of the phosphatidylcholine contains an alkyl ether linkage and some bioactive lysophospholipids, such as lysophosphatidic acid (lysoPA). As overproduction of these lipid mediators causes inflammation and tissue disorders, it is extremely important to understand the mechanisms regulating the expression and functions of PLA2. Recent advances in molecular and cellular biology have enabled us to understand the molecular nature, possible function, and regulation of a variety of PLA2 isozymes. Mammalian tissues and cells generally contain more than one enzyme, each of which is regulated independently and exerts distinct functions. Here we classify mammalian PLA2s into three large groups, namely, secretory (sPLA2), cytosolic (cPLA2), and Ca2+-independent PLA2s, on the basis of their enzymatic properties and structures and focus on the general undestanding of the possible regulatory functions of each PLA2 isozyme. In particular, the roles of type II sPLA2 and cPLA2 in lipid mediator generation are discussed.