Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Immunology
IF: 1.404 5-Year IF: 3.347 SJR: 0.706 SNIP: 0.55 CiteScore™: 2.19

ISSN Print: 1040-8401
ISSN Online: 2162-6472

Volume 40, 2020 Volume 39, 2019 Volume 38, 2018 Volume 37, 2017 Volume 36, 2016 Volume 35, 2015 Volume 34, 2014 Volume 33, 2013 Volume 32, 2012 Volume 31, 2011 Volume 30, 2010 Volume 29, 2009 Volume 28, 2008 Volume 27, 2007 Volume 26, 2006 Volume 25, 2005 Volume 24, 2004 Volume 23, 2003 Volume 22, 2002 Volume 21, 2001 Volume 20, 2000 Volume 19, 1999 Volume 18, 1998 Volume 17, 1997 Volume 16, 1996 Volume 15, 1995 Volume 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.v30.i2.40
pages 149-165

Staphylococcal Superantigen Super-Domains in Immune Evasion

Ries Langley
The Maurice Wilkins Centre for Research, University of Auckland, New Zealand
Deepa Patel
The Maurice Wilkins Centre for Research, University of Auckland, New Zealand
Nicola Jackson
The Maurice Wilkins Centre for Research, University of Auckland, New Zealand
Fiona Clow
The Maurice Wilkins Centre for Research, University of Auckland, New Zealand
John D. Fraser
The Maurice Wilkins Centre for Research, University of Auckland, New Zealand


Staphylococcus aureus is a robust pathogen that is capable of growing in virtually any part of the human body, and can also survive and grow in many other species. S. aureus remains the most frequent cause of hospital-acquired infection and, with the emergence and spread of drug-resistant, hypervirulent, community-acquired strains, the specter looms of the ultimate superbug. S. aureus produces an array of immune evasion factors that target various components of host immune defense. Among them are the powerful superantigen (SAg) and SAg-like (SSL) molecules, which are coded for by genes scattered across several genomic and pathogenicity islands. The SAgs universally bind MHC (major histocompatibility complex) class II and T-cell receptors to induce profound T-cell activation, while the SSLs target a range of molecules regulating opsonophagocytosis and neutrophil function. Despite functional diferences, the SAgs and SSLs have clearly evolved from a single ancestral gene that now codes for a stable, two-domain protein, with each domain responsible for binding a diferent target molecule. This superstructure tolerates extensive surface variation, enabling a wide assortment of virulence factors targeting multiple steps in innate immunity. Notably, both the SAgs and the SSLs exhibit optimal activity for humans and non-human primates, clearly indicating that primates have been the preferred host for S. aureus evolution. This restricted function makes it difficult to assess their role in staphylococcal virulence using animal models of infection. This brief review focuses on the structural features of SAgs and SSLs and their individual functions as we currently understand them.

Articles with similar content:

Role of Galectin-3 in the Initial Control of Leishmania Infection
Critical Reviews™ in Immunology, Vol.34, 2014, issue 2
Guillaume St-Pierre, Pampa Bhaumik, Isabelle Pelletier, Sachiko Sato
The Cbl Protooncogene Product: From an Enigmatic Oncogene to Center Stage of Signal Transduction
Critical Reviews™ in Oncogenesis, Vol.8, 1997, issue 2-3
Patrice Douillard, Mark L. Lupher, Jr., Nancy L. Lill, Satoshi Ota, Christopher E. Andoniou, Hamid Band, Navin Rao, Sachiko Miyake
The Goldilocks Conundrum: NLR Inflammasome Modulation of Gastrointestinal Inflammation during Inflammatory Bowel Disease
Critical Reviews™ in Immunology, Vol.36, 2016, issue 4
Veronica M. Ringel-Scaia, Irving C. Allen, Dylan K. McDaniel
Important Biology Events and Pathways in Brucella Infection and Implications for Novel Antibiotic Drug Targets
Critical Reviews™ in Eukaryotic Gene Expression, Vol.23, 2013, issue 1
Guangjun Gao, Jie Xu
Autophagy and Autophagy-Related Proteins in the Immunity against Mycobacterium Tuberculosis
Forum on Immunopathological Diseases and Therapeutics, Vol.6, 2015, issue 3-4
Isabelle Vergne, Aïcha Bah