Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Immunology
IF: 1.352 5-Year IF: 3.347 SJR: 0.657 SNIP: 0.55 CiteScore™: 2.19

ISSN Print: 1040-8401
ISSN Online: 2162-6472

Volumes:
Volume 40, 2020 Volume 39, 2019 Volume 38, 2018 Volume 37, 2017 Volume 36, 2016 Volume 35, 2015 Volume 34, 2014 Volume 33, 2013 Volume 32, 2012 Volume 31, 2011 Volume 30, 2010 Volume 29, 2009 Volume 28, 2008 Volume 27, 2007 Volume 26, 2006 Volume 25, 2005 Volume 24, 2004 Volume 23, 2003 Volume 22, 2002 Volume 21, 2001 Volume 20, 2000 Volume 19, 1999 Volume 18, 1998 Volume 17, 1997 Volume 16, 1996 Volume 15, 1995 Volume 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.2019033126
pages 239-265

Pathophysiology, Etiology, Epidemiology of Type 1 Diabetes and Computational Approaches for Immune Targets and Therapy

Begum Dariya
Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
Gayathri Chalikonda
Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322
Gowru Srivani
Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
Afroz Alam
Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
Ganji Purnachandra Nagaraju
Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322

ABSTRACT

Autoimmune diseases occur when the body's natural defense system fails to differentiate its own cells from the foreign cells and mistakenly attacks the healthy cells. Among the autoimmune diseases, the most common serious disease is the type 1 diabetes (T1D). Biomarkers like c-peptide, autoantibodies, and glycated molecules are now widely used for the early diagnosis of diabetes. However, the diverse nature of biomarkers and the available autoantibodies as biomarkers are not enough to differentiate the heterogeneity inherent in T1D. Novel biomarkers have allowed the introduction of bioinformatics for assimilating the new data into clinical tools. Computer-aided drug design contributes to the discovery of novel autoantibodies, and molecular docking promises to enhance it. Moreover, the study of the pathophysiology of diabetes via molecular simulation has been proposed. In this review article, we focus on the characterization of the etiology, epidemiological factors, and mechanisms of hyperglycemia that induce cellular damage due to oxidative stress and proinflammatory responses. We also decribe novel biomarkers used for the detection of β-cell destruction and diagnosis at early stages. Bioinformatics tools including molecular docking, sequence alignment, and homology modeling are also presented. This report supports researchers in drug design, in disease detection at an early phase, and in therapy development for T1D-associated complications.

REFERENCES

  1. Bach J-F. The effect of infections on susceptibility to autoimmune and allergic diseases. New Engl J Med. 2002;347(12):911-20. .

  2. Durinovic-Bello I, Schlosser M, Riedl M, Maisel N, Rosinger S, Kalbacher H, Deeg M, Ziegler M, Elliott J, Roep B. Pro-and anti-inflammatory cytokine production by autoimmune T cells against preproinsulin in HLA-DRB1 04, DQ8 type 1 diabetes. Diabetologia. 2004;47(3):439-50. .

  3. Soltesz G, Patterson C, Dahlquist G, Group ES. World-wide childhood type 1 diabetes incidence-what can we learn from epidemiology? Pediatr Diabet. 2007;8:6-14. .

  4. Jarosz-Chobot P, Polanska J, Szadkowska A, Kretowski A, Bandurska-Stankiewicz E, Ciechanowska M, Deja G, Mysliwiec M, Peczynska J, Rutkowska J. Rapid increase in the incidence of type 1 diabetes in Polish children from 1989 to 2004, and predictions for 2010 to 2025. Diabetologia. 2011;54(3):508-15 .

  5. Group EAS. Variation and trends in incidence of childhood diabetes in Europe. Lancet. 2000;355(9207):873-76. .

  6. Group DP. Incidence and trends of childhood type 1 diabetes worldwide 1990-1999. Diabet Med. 2006;23(8):857-66. .

  7. Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G, Group ES. Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: a multicentre prospective registration study. Lancet. 2009;373(9680):2027-33. .

  8. Green A, Patterson CC, Group ETS. Trends in the incidence of childhood-onset diabetes in Europe 1989-1998. Diabetologia. 2001;44(3):B3-B8. .

  9. Ronningen KS, Keiding N, Green A. Correlations between the incidence of childhood-onset type I diabetes in Europe and HLA genotypes. Diabetologia. 2001;44(3):B51-B59. .

  10. Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, Greenbaum CJ, Herold KC, Krischer JP, Lernmark A. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabet Care. 2015;38(10):1964-74. .

  11. Nathan D, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C, Control D, Group CTR. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New Engl J Med. 1993;329(14):977. .

  12. Aas Z, Babaei E, Feizi MAH, Dehghan G. Anti-proliferative and apoptotic effects of dendrosomal farnesiferol C on gastric cancer cells. Asian Pac J Cancer Prev. 2015;16(13):5325-29. .

  13. Thunander M, Petersson C, Jonzon K, Fornander J, Ossiansson B, Torn C, Edvardsson S, Landin-Olsson M. Incidence of type 1 and type 2 diabetes in adults and children in Kronoberg, Sweden. Diabet Res Clin Pract. 2008;82(2):247-55. .

  14. Thomas NJ, Jones SE, Weedon MN, Shields BM, Oram RA, Hattersley AT. Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK Biobank. Lancet Diabet Endocrinol. 2018;6(2):122-29. .

  15. Baranda FS, Coto E, Deaz JM, Martinez-Naves E, Martenez VA, Lopez-Larrea C. HLA class II and susceptibility and resistance to insulin-dependent diabetes mellitus in a population from the northwest of Spain. Int J Immunogen. 1994;21(4):219-29. .

  16. Delli AJ, Lindblad B, Carlsson A, Forsander G, Ivarsson SA, Ludvigsson J, Marcus C, Lernmark A, Group BDDS. Type 1 diabetes patients born to immigrants to Sweden increase their native diabetes risk and differ from Swedish patients in HLA types and islet autoantibodies. Pediatr Diabet. 2010;11(8):513-20. .

  17. Turner R, Stratton I, Horton V, Manley S, Zimmet P, Mackay IR, Shattock M, Bottazzo GF, Holman R, Group UPDS. UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. Lancet. 1997;350(9087):1288-93. .

  18. Svensson J, Carstensen B, Mortensen HB, Borch-Johnsen K, Diabetes DSGoC. Early childhood risk factors associated with type 1 diabetes-is gender important? Eur J Epidemiol. 2005;20(5):429-34. .

  19. Patterson C, Gyurus E, Rosenbauer J, Cinek O, Neu A, Schober E, Parslow R, Joner G, Svensson J, Castell C. Trends in childhood type 1 diabetes incidence in Europe during 1989-2008: evidence of non-uniformity over time in rates of increase. Diabetologia. 2012;55(8):2142-47. .

  20. Onkamo P, Vaananen S, Karvonen M, Tuomilehto J. Worldwide increase in incidence of type I diabetes-the analysis of the data on published incidence trends. Diabe-tologia. 1999;42(12):1395-403. .

  21. Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet. 2016;387(10035):2340-48. .

  22. Ilonen J, Hammais A, Laine A-P, Lempainen J, Vaarala O, Veijola R, Simell O, Knip M. Patterns of P-cell autoanti-body appearance and genetic associations during the first years of life. Diabetes. 2013;62(10):3636-40. .

  23. Lempainen J, Laine A-P, Hammais A, Toppari J, Simell O, Veijola R, Knip M, Ilonen J. Non-HLA gene effects on the disease process of type 1 diabetes: from HLA susceptibility to overt disease. J Autoimmun. 2015;61:45-53. .

  24. Giannopoulou EZ, Winkler C, Chmiel R, Matzke C, Scholz M, Beyerlein A, Achenbach P, Bonifacio E, Ziegler A-G. Islet autoantibody phenotypes and incidence in children at increased risk for type 1 diabetes. Diabetologia. 2015;58(10):2317-23. .

  25. Krischer JP, Lynch KF, Lernmark A, Hagopian WA, Rewers MJ, She J-X, Toppari J, Ziegler A-G, Akolkar B, Group TS. Genetic and environmental interactions modify the risk of diabetes-related autoimmunity by 6 years of age: the TEDDY study. Diabet Care. 2017;40(9):1194-202. .

  26. Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, Winkler C, Ilonen J, Veijola R, Knip M. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309(23):2473-79. .

  27. Gorus F, Vandewalle C, Dorchy H, Van Crombrugge P, Schuit F, Pipeleers D. Influence of age on the associations among insulin autoantibodies, islet cell antibodies, and HLA DAQ1 0301-DQB1 0302 in siblings of patients with type 1 (insulin-dependent) diabetes mellitus. Belgian diabetes registry. J Clin Endocrinol Metabol. 1994;78(5):1172-78. .

  28. Rolandsson O, Hagg E, Hampe C, Sullivan Jr E, Nilsson M, Jansson G, Hallmans G, Lernmark A. Glutamate decarboxylase (GAD65) and tyrosine phosphatase-like protein (IA-2) autoantibodies index in a regional population is related to glucose intolerance and body mass index. Diabetologia. 1999;42(5):555-59. .

  29. Rewers M, Norris JM, Eisenbarth GS, Erlich HA, Beaty B, Klingensmith G, Hoffman M, Yu L, Bugawan TL, Blair A. Beta-cell autoantibodies in infants and toddlers without IDDM relatives: diabetes autoimmunity study in the young (DAISY). J Autoimmun. 1996;9(3):405-10. .

  30. Ziegler A-G, Hummel M, Schenker M, Bonifacio E. Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. Diabetes. 1999;48(3):460-68. .

  31. Savola K, Bonifacio E, Sabbah E, Kulmala P, Vahasalo P, Karjalainen J, Tuomilehto-Wolf E, Merilainen J, Akerblom H, Knip M. IA-2 antibodies-a sensitive marker of IDDM with clinical onset in childhood and adolescence. Diabetologia. 1998;41(4):424-29. .

  32. Lampasona V, Petrone A, Tiberti C, Capizzi M, Spoletini M, Di Pietro S, Songini M, Bonicchio S, Giorgino F, Bonifacio E. Zinc transporter 8 antibodies complement GAD and IA-2 antibodies in the identification and characterization of adult-onset autoimmune diabetes: Non Insulin Requiring Autoimmune Diabetes (NIRAD) 4. Diabet Care. 2010;33(1):104-8. .

  33. Nerup J, Platz P, Andersen OO, Christy M, Lyngsoe J, Poulsen J, Ryder L, Thomsen M, Nielsen LS, Svejgaard A. HL-A antigens and diabetes mellitus. Lancet. 1974; 304(7885):864-66. .

  34. Singal D, Blajchman M. Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus. Diabetes. 1973;22(6): 429-32. .

  35. Cudworth A, Woodrow J. Evidence for HL-A-linked genes in "juvenile" diabetes mellitus. Br Med J. 1975;3(5976): 133-35. .

  36. Thomson G, Valdes A, Noble J, Kockum I, Grote M, Najman J, Erlich H, Cucca F, Pugliese A, Steenkiste A. Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. Tiss Antigens. 2007;70(2):110-27. .

  37. Pociot F, Lernmark A. Genetic risk factors for type 1 diabetes. Lancet. 2016;387(10035):2331-39. .

  38. Fradin D, Le Fur S, Mille C, Naoui N, Groves C, Zelenika D, McCarthy MI, Lathrop M, Bougneres P. Association of the CpG methylation pattern of the proximal insulin gene promoter with type 1 diabetes. PLoS One. 2012;7(5):e36278. .

  39. Miao F, Chen Z, Zhang L, Liu Z, Wu X, Yuan Y-C, Natarajan R. Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. J Bio Chem. 2012;287(20):16335-45. .

  40. Hezova R, Slaby O, Faltejskova P, Mikulkova Z, Buresova I, Raja KM, Hodek J, Ovesna J, Michalek J. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol. 2010;260(2):70-74. .

  41. Moulder R, Bhosale SD, Erkkila T, Laajala E, Salmi J, Nguyen EV, Kallionpaa H, Mykkanen J, Vaha-Makila M, Hyoty H. Serum proteomes distinguish children developing type 1 diabetes in a cohort with HLA-conferred sus-ceptibility. Diabetes. 2015;64(6):2265-78. .

  42. Hanifi-Moghaddam P, Schloot NC, Kappler S, SeiPler J, Kolb H. An association of autoantibody status and serum cytokine levels in type 1 diabetes. Diabetes. 2003;52(5):1137-42. .

  43. Hanifi-Moghaddam P, Kappler S, Seissler J, Muller-Scholze S, Martin S, Roep B, Strassburger K, Kolb H, Schloot N. Altered chemokine levels in individuals at risk of type 1 diabetes mellitus. Diabet Med. 2006;23(2): 156-63. .

  44. Zak K, Popova V, Mel'nichenko S, Tron'ko E, Man'kovskii B. The level of circulating cytokines and chemokines in the preclinical and early clinical stages of type IA diabetes mellitus development. Terapevticheskii Arkhiv. 2010;82(10):10-15. .

  45. Purohit S, Sharma A, Hopkins D, Steed L, Bode B, Anderson SW, Reed JC, Steed RD, Yang T, She J-X. Large-scale discovery and validation studies demonstrate significant reductions in circulating levels of IL8, IL-1Ra, MCP-1, and MIP-1P in patients with type 1 diabetes. J Clin Endocrinol Metabol. 2015;100(9):E1179-E87. .

  46. Scholin A, Torn C, Nystrom L, Berne C, Arnqvist H, Blohme G, Bolinder J, Eriksson JW, Kockum I, Landin-Olsson M. Normal weight promotes remission and low number of islet antibodies prolong the duration of remission in type 1 diabetes. Diabet Med. 2004;21(5):447-55. .

  47. Leighton E, Sainsbury CA, Jones GC. A practical review of C-peptide testing in diabetes. Diabet Ther. 2017;8(3):475-87. .

  48. Bonifacio E. Predicting type 1 diabetes using biomarkers. Diabet Care. 2015;38(6):989-96. .

  49. Ilonen J, Lempainen J, Hammais A, Laine AP, Harkonen T, Toppari J, Veijola R, Knip M, Register FPD. Primary islet autoantibody at initial seroconversion and autoantibodies at diagnosis of type 1 diabetes as markers of disease heterogeneity. Pediatr Diabet. 2018;19(2):284-92. .

  50. Endesfelder D, Hagen M, Winkler C, Haupt F, Zillmer S, KnopffA, Bonifacio E, Ziegler A-G, Zu Castell W, Achenbach P. A novel approach for the analysis of longitudinal profiles reveals delayed progression to type 1 diabetes in a subgroup of multiple-islet-autoantibody-positive children. Diabetologia. 2016;59(10):2172-80. .

  51. Vehik K, Lynch KF, Schatz DA, Akolkar B, Hagopian W, Rewers M, She J-X, Simell O, Toppari J, Ziegler A-G. Reversion of P-cell autoimmunity changes risk of type 1 diabetes: TEDDY study. Diabet Care. 2016;39(9):1535-42. .

  52. Calderon B, Sacks DB. Islet autoantibodies and type 1 diabetes: does the evidence support screening? Clin Chem. 2014;60(3):438-40. .

  53. Torn C, Hadley D, Lee H-S, Hagopian W, Lernmark A, Simell O, Rewers M, Ziegler A, Schatz D, Akolkar B. Role of type 1 diabetes-associated SNPs on risk of autoantibody positivity in the TEDDY study. Diabetes. 2015;64(5):1818-29. .

  54. Yu W-L, Sun Y. Comment on Rondas et al. citrullinated glucose-regulated protein 78 is an autoantigen in type 1 diabetes. Diabetes 2015;64(3):573-586. .

  55. Strollo R, Rizzo P, Spoletini M, Landy R, Hughes C, Ponchel F, Napoli N, Palermo A, Buzzetti R, Pozzilli P. HLA-dependent autoantibodies against post-translationally modified collagen type II in type 1 diabetes mellitus. Diabetologia. 2013;56(3):563-72. .

  56. Doran TM, Morimoto J, Simanski S, Koesema EJ, Clark LF, Pels K, Stoops SL, Pugliese A, Skyler JS, Kodadek T. Discovery of phosphorylated peripherin as a major humoral autoantigen in type 1 diabetes mellitus. Cell Chem Biol. 2016;23(5):618-28. .

  57. Strollo R, Vinci C, Napoli N, Pozzilli P, Ludvigsson J, Nissim A. Antibodies to post-translationally modified insulin as a novel biomarker for prediction of type 1 diabetes in children. Diabetologia. 2017;60(8):1467-74. .

  58. Akirav EM, Lebastchi J, Galvan EM, Henegariu O, Akirav M, Ablamunits V, Lizardi PM, Herold KC. Detection of P cell death in diabetes using differentially methylated circulating DNA. Proc Natl Acad Sci. 2011;108(47):19018-23. .

  59. Assmann TS, Recamonde-Mendoza M, De Souza BM, Crispim D. MicroRNA expression profiles and type 1 diabetes mellitus: systematic review and bioinformatic analysis. Endocr Connect. 2017;6(8):773-90. .

  60. Seyhan AA, Lopez YON, Xie H, Yi F, Mathews C, Pasarica M, Pratley RE. Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study. Sci Rep. 2016;6:31479. .

  61. Nielsen LB, Wang C, Serensen K, Bang-Berthelsen CH, Hansen L, Andersen M-LM, Hougaard P, Juul A, Zhang C-Y, Pociot F. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exper Diabet Res. 2012;2012. .

  62. Erener S, Mojibian M, Fox JK, Denroche HC, Kieffer TJ. Circulating miR-375 as a biomarker of P-cell death and diabetes in mice. Endocrinology. 2013;154(2):603-8. .

  63. Osipova J, Fischer D-C, Dangwal S, Volkmann I, Widera C, Schwarz K, Lorenzen JM, Schreiver C, Jacoby U, Heimhalt M. Diabetes-associated microRNAs in pediatric patients with type 1 diabetes mellitus: a cross-sectional cohort study. J Clin Endocrinol Metabol. 2014;99(9): E1661-E1665. .

  64. Nabih ES, Andrawes NG. The association between circulating levels of miRNA-181a and pancreatic beta cells dysfunction via SMAD7 in type 1 diabetic children and adolescents. J Clin Lab Analy. 2016;30(5):727-31. .

  65. Sebastiani G, Grieco FA, Spagnuolo I, Galleri L, Cataldo D, Dotta F. Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabet/Metabol Res Rev. 2011;27(8):862-66. .

  66. Salas-Perez F, Codner E, Valencia E, Pizarro C, Carrasco E, Perez-Bravo F. MicroRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology. 2013;218(5):733-37. .

  67. Yang M, Ye L, Wang B, Gao J, Liu R, Hong J, Wang W, Gu W, Ning G. Decreased mi R-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1 (downreg-ulation of miR-146 expression in peripheral blood mono-nuclear cells in patients with type 2 diabetes is associated with persistent immune imbalance in pancreatic islets). J Diabet. 2015;7(2):158-65. .

  68. Pflueger M, Seppanen-Laakso T, Suortti T, Hyotylainen T, Achenbach P, Bonifacio E, Oresic M, Ziegler A-G. Age- and islet autoimmunity-associated differences in amino acid and lipid metabolites in children at risk for type 1 diabetes. Diabetes. 2011;60(11):2740-47. .

  69. Fox TE, Bewley MC, Unrath KA, Pedersen MM, Anderson RE, Jung DY, Jefferson LS, Kim JK, Bronson SK, Flanagan JM. Circulating sphingolipid biomarkers in models of type 1 diabetes. J Lipid Res. 2011;52(3):509-17. .

  70. La Torre D, Seppanen-Laakso T, Larsson HE, Hyotylainen T, Ivarsson SA, Lernmark A, Oresic M, Group DS. Decreased cord-blood phospholipids in young age-at-onset type 1 diabetes. Diabetes. 2013;62(11):3951-56. .

  71. Pickup JC, Hussain F, Evans ND, Sachedina N. In vivo glucose monitoring: the clinical reality and the promise. Biosensors Bioelectronics. 2005;20(10):1897-902. .

  72. McClenaghan NH, Flatt P. Engineering cultured insulin-secreting pancreatic B-cell lines. J Mol Med. 1999; 77(1):235-43. .

  73. Flatt P, Lenzen S. Frontiers of insulin secretion and pancreatic B-cell research. London: Smith-Gordon; 1994. .

  74. Markert LG. Prolonged exercise and its effects on type 1 diabetes mellitus [dissertation]. Laramie, WY: University of Wyoming; 2017. .

  75. Cooper JD, Smyth DJ, Walker NM, Stevens H, Burren OS, Wallace C, Greissl C, Ramos-Lopez E, Hypponen E, Dunger DB. Inherited variation in vitamin D genes is associated with predisposition to autoimmune disease type 1 diabetes. Diabetes. 2011;60(5):1624-31. .

  76. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383(9911):69-82. .

  77. Hostens K, Pavlovic D, Zambre Y, Ling Z, Van Schravendijk C, Eizirik DL, Pipeleers DG. Exposure of human islets to cytokines can result in disproportionately elevated proinsulin release. J Clin Investig. 1999;104(1): 67-72. .

  78. Ohara-Imaizumi M, Cardozo AK, Kikuta T, Eizirik DL, Nagamatsu S. The cytokine interleukin-1P reduces the docking and fusion of insulin granules in pancreatic P-cells, preferentially decreasing the first phase of exocytosis. J Bio Chem. 2004;279(40):41271-74. .

  79. Eizirik DL, Mandrup-Poulsen T. A choice of death-the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia. 2001;44(12):2115-33. .

  80. Wallberg M, Cooke A. Immune mechanisms in type 1 diabetes. Trends Immunol. 2013;34(12):583-91. .

  81. Carrero JA, Calderon B, Towfic F, Artyomov MN, Unanue ER. Correction: defining the transcriptional and cellular landscape of type 1 diabetes in the NOD mouse. PLoS One. 2014;9(1). doi: 10.1371/annotation/f277b29e-361b-4e56-b55b-612ebaca0432. .

  82. Turley S, Poirot L, Hattori M, Benoist C, Mathis D. Physiological P cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exper Med. 2003;198(10):1527-37. .

  83. Magnuson AM, Thurber GM, Kohler RH, Weissleder R, Mathis D, Benoist C. Population dynamics of islet-infiltrating cells in autoimmune diabetes. Proc Natl Acad Sci. 2015;112(5):1511-16. .

  84. Calderon B, Carrero JA, Miller MJ, Unanue ER. Cellular and molecular events in the localization of diabetogenic T cells to islets of Langerhans. Proc Natl Acad Sci. 2011;108(4):1561-66. .

  85. Scott NA, Zhao Y, Krishnamurthy B, Mannering SI, Kay TW, Thomas HE. IFNy-induced MHC class II expression on islet endothelial cells is an early marker of insulitis but is not required for diabetogenic CD4+ T cell migration. Front Immunol. 2018;9:2800. .

  86. Sandor AM, Lindsay RS, Dyjack N, Whitesell JC, Rios C, Bradley BJ, Haskins K, Serreze DV, Geurts AM, Chen Y-G. CD11c+ cells are gatekeepers for lymphocyte trafficking to infiltrated islets during type 1 diabetes. Frontiers Immunol. 2019;10:99. .

  87. Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes. 1965;14(10):619-33. .

  88. Bottazzo GF, Dean BM, McNally JM, MacKay EH, Swift PG, Gamble DR. In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. New Engl J Med. 1985;313(6):353-60. .

  89. Lernmark A, Stenger D, Baskin D, Palmer J, Li L, Kloppel G, Vathanaprida C, Falt K, Landin-Olsson M, Gown A. Heterogeneity of islet pathology in two infants with recent onset diabetes mellitus. Virchows Archiv. 1995;425(6):631-40. .

  90. Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, Gottlieb P, Rewers M, Eisenbarth GS, Jensen J, Davidson HW. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci. 2007;104(43):17040-45. .

  91. Palmer JP, Asplin CM, Clemons P, Lyen K, Tatpati O, Raghu PK, Paquette TL. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science. 1983;222(4630):1337-39. .

  92. Baekkeskov S, Aanstoot H-J, Christgai S, Reetz A, Solimena M, Cascalho M, Folli F, Richter-Olesen H, Camilli P-D. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 1990;347(6289):151. .

  93. Rabin DU, Pleasic SM, Palmer-Crocker R, Shapiro JA. Cloning and expression of IDDM-specific human autoantigens. Diabetes. 1992;41(2):183-86. .

  94. Wasmeier C, Hutton JC. Molecular cloning of phog- rin, a protein-tyrosine phosphatase homologue localized to insulin secretory granule membranes. J Bio Chem. 1996;271(30):18161-70. .

  95. Kaufman D, Erlander M, Clare-Salzler M, Atkinson M, Maclaren N, Tobin A. Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J Clin Investig. 1992;89(1):283-92. .

  96. Fenalti G, Law RH, Buckle AM, Langendorf C, Tuck K, Rosado CJ, Faux NG, Mahmood K, Hampe CS, Banga JP. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat Struct Mol Biol. 2007;14(4):280. .

  97. Kass I, Hoke DE, Costa MG, Reboul CF, Porebski BT, Cowieson NP, Leh H, Pennacchietti E, McCoey J, Kleifeld O. Cofactor-dependent conformational heterogeneity of GAD65 and its role in autoimmunity and neurotransmitter homeostasis. Proc Natl Acad Sci. 2014;111(25):E2524-29. .

  98. Mally MI, Cirulli V, Otonkoski T, Soto G, Hayek A. Ontogeny and tissue distribution of human GAD expression. Diabetes. 1996;45(4):496-501. .

  99. Gotter J, Brors B, Hergenhahn M, Kyewski B. Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exper Med. 2004;199(2):155-66. .

  100. Piquer S, Belloni C, Lampasona V, Bazzigaluppi E, Vianello M, Giometto B, Bosi E, Bottazzo GF, Bonifacio E. Humoral autoimmune responses to glutamic acid de-carboxylase have similar target epitopes and subclass that show titer-dependent disease association. Clin Immunol. 2005;117(1):31-35. .

  101. Bonifacio E, Lampasona V, Bernasconi L, Ziegler A-G. Maturation of the humoral autoimmune response to epitopes of GAD in preclinical childhood type 1 diabetes. Diabetes. 2000;49(2):202-8. .

  102. Kawasaki E, Yu L, Rewers MJ, Hutton JC, Eisenbarth GS. Definition of multiple ICA512/phogrin autoantibody epitopes and detection of intramolecular epitope spreading in relatives of patients with type 1 diabetes. Diabetes. 1998;47(5):733-42. .

  103. Solimena M, Dirkx R, Hermel J, Pleasic-Williams S, Shapiro J, Caron L, Rabin D. ICA 512, an autoantigen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. EMBO J. 1996;15(9):2102-14. .

  104. Trajkovski M, Mziaut H, Schubert S, Kalaidzidis Y, Altkruger A, Solimena M. Regulation of insulin granule turnover in pancreatic P-cells by cleaved ICA512. J Bio Chem. 2008;283(48):33719-29. .

  105. Trajkovski M, Mziaut H, Altkruger A, Ouwendijk J, Knoch K-P, Muller S, Solimena M. Nuclear translocation of an ICA512 cytosolic fragment couples granule exocytosis and insulin expression in P-cells. J Cell Biol. 2004;167(6):1063-74. .

  106. Diez J, Park Y, Zeller M, Brown D, Garza D, Ricordi C, Hutton J, Eisenbarth GS, Pugliese A. Differential splicing of the IA-2 mRNA in pancreas and lymphoid organs as a permissive genetic mechanism for autoimmunity against the IA-2 type 1 diabetes autoantigen. Diabetes. 2001;50(4):895-900. .

  107. Bearzatto M, Lampasona V, Belloni C, Bonifacio E. Fine mapping of diabetes-associated IA-2 specific autoantibodies. J Autoimmun. 2003;21(4):377-82. .

  108. Dromey JA, Weenink SM, Peters GH, Endl J, Tighe PJ, Todd I, Christie MR. Mapping of epitopes for autoantibodies to the type 1 diabetes autoantigen IA-2 by peptide phage display and molecular modeling: overlap of antibody and T cell determinants. J Immunol. 2004;172(7):4084-90. .

  109. Chimienti F, Devergnas S, Favier A, Seve M. Identification and cloning of a P-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes. 2004;53(9):2330-7. .

  110. Lemaire K, Chimienti F, Schuit F. Zinc transporters and their role in the pancreatic P-cell. J Diabet Investig. 2012;3(3):202-11. .

  111. Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B, Kerr-Conte J, Van Lommel L, Grunwald D, Favier A. In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci. 2006;119(20):4199-206. .

  112. Mohanasundaram D, Drogemuller C, Brealey J, Jessup CF, Milner C, Murgia C, Lang CJ, Milton A, Zalewski PD, Russ GR. Ultrastructural analysis, zinc transporters, glucose transporters and hormones expression in new world primate (Callithrix jacchus) and human pancreatic islets. Gen Comp Endocrinol. 2011;174(2):71-79. .

  113. Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, Lush MJ, Povey S, Talbot Jr CC, Wright MW. Gene map of the extended human MHC. Nat Rev Gen. 2004;5(12):889. .

  114. Ounissi-Benkalha H, Polychronakos C. The molecular genetics of type 1 diabetes: new genes and emerging mecha-nisms. Trends Mol Med. 2008;14(6):268-75. .

  115. Van Belle TL, Coppieters KT, Von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 2011;91(1):79-118. .

  116. Yu L, Zhao Z, Steck AK. T1D Autoantibodies: room for improvement? Curr Opin Endocrinol Diabet Obesity. 2017;24(4):285. .

  117. Redondo MJ, Jeffrey J, Fain PR, Eisenbarth GS, Orban T. Concordance for islet autoimmunity among monozygotic twins. New Engl J Med. 2008;359(26):2849-50. .

  118. Maziarz M, Hagopian W, Palmer J, Sanjeevi C, Kockum I, Breslow N, Lernmark A, Register TSCD, Graham J, Mac-Neney B. Non-HLA type 1 diabetes genes modulate disease risk together with HLA-DQ and islet autoantibodies. Gene Immun. 2015;16(8):541. .

  119. Risch N. Assessing the role of HLA-linked and unlinked determinants of disease. Am J Human Gen. 1987;40(1):1. .

  120. Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. New Engl J Med. 2009;360(16):1646-54. .

  121. Sosenko JM, Skyler JS, DiMeglio LA, Beam CA, Krischer JP, Greenbaum CJ, Boulware D, Rafkin LE, Matheson D, Herold KC. A new approach for diagnosing type 1 diabetes in autoantibody-positive individuals based on prediction and natural history. Diabet Care. 2015;38(2):271-76. .

  122. Helminen O, Aspholm S, Pokka T, Ilonen J, Simell O, Veijola R, Knip M. OGTT and random plasma glucose in the prediction of type 1 diabetes and time to diagnosis. Diabetologia. 2015;58(8):1787-96. .

  123. Helminen O, Aspholm S, Pokka T, Hautakangas M-R, Haatanen N, Lempainen J, Ilonen J, Simell O, Knip M, Veijola R. HbA1c predicts time to diagnosis of type 1 diabetes in children at risk. Diabetes. 2015;64(5):1719-27 .

  124. Krischer JP, Group TDTS. The use of intermediate end- points in the design of type 1 diabetes prevention trials. Diabetologia. 2013;56(9):1919-24. .

  125. Krogvold L, Wiberg A, Edwin B, Buanes T, Jahnsen FL, Hanssen KF, Larsson E, Korsgren O, Skog O, Dahl-Jergensen K. Insulitis and characterisation of infiltrating T cells in surgical pancreatic tail resections from patients at onset of type 1 diabetes. Diabetologia. 2016;59(3):492-501. .

  126. Imagawa A, Hanafusa T, Tamura S, Moriwaki M, Itoh N, Yamamoto K, Iwahashi H, Yamagata K, Waguri M, Nanmo T. Pancreatic biopsy as a procedure for detecting in situ autoimmune phenomena in type 1 diabetes: close correlation between serological markers and histological evidence of cellular autoimmunity. Diabetes. 2001;50(6):1269-73. .

  127. Krischer JP, Lynch KF, Schatz DA, Ilonen J, Lernmark A, Hagopian WA, Rewers MJ, She J-X, Simell OG, Toppari J. The 6 year incidence of diabetes-associated autoantibodies in genetically atrisk children: the TEDDY study. Diabetologia. 2015;58(5):980-87. .

  128. Association AD. Standards of medical care in diabetes-2010. Diabetes Care. 2010;33(Suppl 1):S11-S61. .

  129. Frank RN. Potential new medical therapies for diabetic retinopathy: protein kinase C inhibitors. New York: Elsevier; 2002. .

  130. Mahmud M. American diabetes association standard of medical care in diabetes. Diabet Care. 2009;32:13-61. .

  131. Gross JL, De Azevedo MJ, Silveiro SP, Canani LH, Caramon ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabet Care. 2005;28(1): 164-76. .

  132. Garg JP, Bakris GL. Microalbuminuria: marker of vascular dysfunction, risk factor for cardiovascular disease. Vasc Med. 2002;7(1):35-43. .

  133. Klausen K, Borch-Johnsen K, Feldt-Rasmussen B, Jensen G, Clausen P, Scharling H, Appleyard M, Jensen JS. Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation. 2004;110(1):32-35. .

  134. Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American diabetes association. Diabet Care. 2005;28(4):956-62. .

  135. Orchard TJ, Olson JC, Erbey JR, Williams K, Forrest KY-Z, Kinder LS, Ellis D, Becker DJ. Insulin resistance-related factors, but not glycemia, predict coronary artery disease in type 1 diabetes: 10-year follow-up data from the pittsburgh epidemiology of diabetes complications study. Diabet Care. 2003;26(5):1374-79. .

  136. Roy M, Peng B, Roy A. Risk factors for coronary disease and stroke in previously hospitalized African Americans with type 1 diabetes: a 6-year follow-up. Diabet Med. 2007;24(12):1361-68. .

  137. Kim B, Feldman EL. Insulin resistance in the nervous system. Trend Endocrinol Metabol. 2012;23(3):133-41. .

  138. Duarte FHG, Jallad RS, Amaro ACS, Drager LF, Lorenzi-Filho G, Bronstein MD. The impact of sleep apnea treatment on carbohydrate metabolism in patients with acromegaly. Pituitary. 2013;16(3):341-50. .

  139. Chaves RN, Duarte ABG, Rodrigues GQ, Celestino JJ, Silva GM, Lopes CAP, Almeida AP, Donato MA, Peixoto C, Moura AA. The effects of insulin and follicle-simulating hormone (FSH) during in vitro development of ovarian goat preantral follicles and the relative mRNA expression for insulin and FSH receptors and cytochrome P450 aromatase in cultured follicles. Biol Reprod. 2012;87(3):69, 1-11. .

  140. de Oliveira Baraldi C, Moises EC, Carvalho TMdJP, de Jesus Antunes N, Lanchote VL, Duarte G, Cavalli RC. Effect of type 2 diabetes mellitus on the pharmacokinetics of metformin in obese pregnant women. Clin Pharmacokinet. 2012;51(11):743-49. .

  141. Donath M, Halban PA. Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia. 2004;47(3):581-89. .

  142. Donath MY, Sterling J, Maedler K, Mandrup-Poulsen T. Inflammatory mediators and islet P-cell failure: a link between type 1 and type 2 diabetes. J Mol Med. 2003;81(8):455-70. .

  143. Rasschaert J, Liu D, Kutlu B, Cardozo A, Kruhaffer M, 0rntoft TF, Eizirik D. Global profiling of double stranded RNA-and IFN-y-induced genes in rat pancreatic beta cells. Diabetologia. 2003;46(12):1641-57. .

  144. Kutlu B, Cardozo AK, Darville MI, Kruhaffer M, Mag- nusson N, 0rntoft T, Eizirik DL. Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells. Diabetes. 2003;52(11):2701-19. .

  145. Cardozo AK, Heimberg H, Heremans Y, Leeman R, Kutlu B, Kruhaffer M, 0rntoft T, Eizirik DL. A comprehensive analysis of cytokine-induced and nuclear factor-KB-dependent genes in primary rat pancreatic P-cells. J Bio Chem. 2001;276(52):48879-86. .

  146. Cardozo AK, Kruhaffer M, Leeman R, 0rntoft T, Eizirik DL. Identification of novel cytokine-induced genes in pancreatic P-cells by high-density oligonucleotide arrays. Diabetes. 2001;50(5):909-20. .

  147. Darville M, Eizirik DL. Regulation by cytokines of the inducible nitric oxide synthase promoter in insulin-producing cells. Diabetologia. 1998;41(9):1101-8. .

  148. Cnop M, Welsh N, Jonas J-C, Jorns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic P-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes. 2005;54(Suppl 2):S97-S107. .

  149. Larsen CM, Wadt KA, Juhl LF, Andersen HU, Karlsen AE, Su MS-S, Seedorf K, Shapiro L, Dinarello CA, Mandrup-Poulsen T. Interleukin-1P-induced rat pancreatic islet nitric oxide synthesis requires both the p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. J Bio Chem. 1998;273(24):15294-300. .

  150. Saldeen J, Lee JC, Welsh N. Role of p38 mitogen-activated protein kinase (p38 MAPK) in cytokine-induced rat islet cell apoptosis. Biochem Pharmacol. 2001;61(12):1561-69. .

  151. Pavlovic D, Andersen NA, Mandrup-Poulsen T, Zizirik D. Activation of extracellular signal-regulated kinase (ERK) 1/2 contributes to cytokine-induced apoptosis in purified rat pancreatic b-cells. Eur Cytokine Netw. 2000;11(2):267-74. .

  152. Saldeen J, Tillmar L, Karlsson E, Welsh N. Nicotinamide-and caspase-mediated inhibition of poly (ADP-ribose) polymerase are associated with p53-independent cell cycle (G2) arrest and apoptosis. Mol Cell Biochem. 2003;243(1-2):113-22. .

  153. Schroder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res/Fund Mol Mechan Mutagen. 2005;569(1-2):29-63. .

  154. Maechler P, Wollheim CB. Mitochondrial function in normal and diabetic P-cells. Nature. 2001;414(6865):807. .

  155. Newmeyer DD, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell. 2003;112(4):481-90. .

  156. Friedlander RM. Apoptosis and caspases in neurodegener-ative diseases. New Engl J Med. 2003;348(14):1365-75. .

  157. Alberti KGMM, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med. 1998;15(7):539-53. .

  158. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114(6): 597-605. .

  159. Tam XH, Shiu SW, Leng L, Bucala R, Betteridge DJ, Tan KC. Enhanced expression of receptor for advanced glycation end-products is associated with low circulating soluble isoforms of the receptor in type 2 diabetes. Clin Sci. 2010;120(2):81-89. .

  160. Giannini C, D'Adamo E, De Giorgis T, Chiavaroli V, Verrotti A, Chiarelli F, Mohn A. The possible role of esRAGE and sRAGE in the natural history of diabetic nephropathy in childhood. Pediatr Nephrol. 2012;27(2):269-75. .

  161. McVicar CM, Ward M, Colhoun LM, Guduric-Fuchs J, Bierhaus A, Fleming T, Schlotterer A, Kolibabka M, Hammes H-P, Chen M. Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice. Diabetologia. 2015;58(5):1129-37. .

  162. Han R, Liu Z, Sun N, Liu S, Li L, Shen Y, Xiu J, Xu Q. BDNF Alleviates neuroinflammation in the hippocampus of type 1 diabetic mice via blocking the aberrant HMGB1/ RAGE/NF-KB pathway. Aging Dis. 2019;10(3):611. .

  163. Tang W, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol. 2012;3:87. .

  164. Liu H, Luo Y, Zhang T, Zhang Y, Wu Q, Yuan L, Chung S, Oates P, Yang J. Genetic deficiency of aldose reductase counteracts the development of diabetic nephropathy in C57BL/6 mice. Diabetologia. 2011;54(5):1242-51. .

  165. Oates PJ. Aldose reductase inhibitors and diabetic kidney disease. Curr Opin Investig Drugs. 2010;11(4):402-17. .

  166. Simunovic M, Paradzik M, Skrabic R, Unic I, Bucan K, Skrabic V. Cataract as early ocular complication in children and adolescents with type 1 diabetes mellitus. Int J Endocrinol. 2018;2018:6763586. .

  167. Akamine T, Kusunose N, Matsunaga N, Koyanagi S, Ohdo S. Accumulation of sorbitol in the sciatic nerve modulates circadian properties of diabetes-induced neuropathic pain hypersensitivity in a diabetic mouse model. Biochem Biophys Res Commun. 2018;503(1):181-87. .

  168. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813. .

  169. Kolm-Litty V, Sauer U, Nerlich A, Lehmann R, Schleicher E. High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Investig. 1998;101(1):160-69. .

  170. Gurel Z, Sieg KM, Shallow KD, Sorenson CM, Sheibani N. Retinal O-linked N-acetylglucosamine protein modifications: implications for postnatal retinal vascularization and the pathogenesis of diabetic retinopathy. Mol Vision. 2013;19:1047. .

  171. Vidro EK, Gee S, Unda R, Ma J-X, Tsin A. Glucose and TGFP2 modulate the viability of cultured human retinal pericytes and their VEGF release. Curr Eye Res. 2008;33(11-12):984-93. .

  172. Burt D, Gruden G, Thomas S, Tutt P, Dell'Anna C, Viberti G, Gnudi L. P38 mitogen-activated protein kinase mediates hexosamine-induced TGFP1 mRNA expression in human mesangial cells. Diabetologia. 2003;46(4):531-37. .

  173. Buse MG. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol-Endocrinol Metabol. 2006;290(1):E1-E8. .

  174. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319-31. .

  175. Koya D, Haneda M, Nakagawa H, Isshiki K, Sato H, Maeda S, Sugimoto T, Yasuda H, Kashiwagi A, Ways DK. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC P inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J. 2000;14(3):439-47. .

  176. Ohshiro Y, Ma RC, Yasuda Y, Hiraoka-Yamamoto J, Clermont AC, Isshiki K, Yagi K, Arikawa E, Kern TS, King GL. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase CP-null mice. Diabetes. 2006;55(11):3112-20. .

  177. Yuan SY, Ustinova EE, Wu MH, Tinsley JH, Xu W, Korompai FL, Taulman AC. Protein kinase C activation contributes to microvascular barrier dysfunction in the heart at early stages of diabetes. Circ Res. 2000;87(5):412-17. .

  178. Beckman JA, Creager MA, Libby P. Diabetes and athero-sclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570-81. .

  179. Maresch CC, Stute DC, Fleming T, Lin J, Hammes H-P, Linn T. Hyperglycemia induces spermatogenic disruption via major pathways of diabetes pathogenesis. Sci Rep. 2019;9(1):1-12. .

  180. Crevecoeur I, Rondas D, Mathieu C, Overbergh L. The beta-cell in type 1 diabetes: what have we learned from pro- teomic studies? Proteom-Clin Appl. 2015;9(7-8):755-66. .

  181. Merchant ML, Niewczas MA, Ficociello LH, Lukenbill JA, Wilkey DW, Li M, Khundmiri SJ, Warram JH, Krolewski AS, Klein JB. Plasma kininogen and kininogen fragments are biomarkers of progressive renal decline in type 1 diabetes. Kidney Int. 2013;83(6):1177-84. .

  182. Mogensen CE, Keane WF, Bennett PH, Jerums G, Parving H-H, Passa P, Steffes MW, Striker GE, Viberti GC. Prevention of diabetic renal disease with special reference to microalbuminuria. In: The Kidney and Hypertension in Diabetes Mellitus. New York: Springer; 1996. p. 539-49. .

  183. Giorgino F, Laviola L, Perm PC, Solnica B, Fuller J, Chaturvedi N. Factors associated with progression to macroalbuminuria in microalbuminuric type 1 diabetic patients: the EURODIAB prospective complications study. Diabetologia. 2004;47(6):1020-28. .

  184. Perkins BA, Krolewski AS. Early nephropathy in type 1 diabetes: a new perspective on who will and who will not progress. Curr Diabet Rep. 2005;5(6):455-63. .

  185. Perkins BA, Ficociello LH, Ostrander BE, Silva KH, Weinberg J, Warram JH, Krolewski AS. Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. J Am Soc Nephrol. 2007;18(4):1353-61. .

  186. Crevecoeur I, Vig S, Mathieu C, Overbergh L. Understanding type 1 diabetes through proteomics. Expert Rev Proteom. 2017;14(7):571-80. .

  187. Crevecoeur I, Gudmundsdottir V, Vig S, Sodre FMC, D'Hertog W, Fierro AC, Van Lommel L, Gysemans C, Marchal K, Waelkens E. Early differences in islets from prediabetic NOD mice: combined microarray and proteomic analysis. Diabetologia. 2017;60(3):475-89. .

  188. Zhang L, Lanzoni G, Battarra M, Inverardi L, Zhang Q. Proteomic profiling of human islets collected from frozen pancreata using laser capture microdissection. J Proteom. 2017;150:149-59. .

  189. Knip M, Veijola R, Virtanen SM, Hyoty H, Vaarala O, Akerblom HK. Environmental triggers and determinants of type 1 diabetes. Diabetes. 2005;54(Suppl 2):S125-S36. .

  190. Howson JM, Stevens H, Smyth DJ, Walker NM, Chandler KA, Bingley PJ, Todd JA. Evidence that HLA class I and II associations with type 1 diabetes, autoantibodies to GAD and autoantibodies to IA-2, are distinct. Diabetes. 2011;60(10):2635-44. .

  191. Collins C, Purohit S, Podolsky R, Zhao H, Schatz D, Eckenrode S, Yang P, Hopkins D, Muir A, Hoffman M. The application of genomic and proteomic technologies in predictive, preventive and personalized medicine. Vasc Pharmacol. 2006;45(5):258-67. .

  192. Fossey SC, Mychaleckyj JC, Pendleton JK, Snyder JR, Bensen JT, Hirakawa S, Rich SS, Freedman BI, Bowden DW. A high-resolution 6.0-megabase transcript map of the type 2 diabetes susceptibility region on human chromosome 20. Genomics. 2001;76(1-3):45-57. .

  193. Hulbert EM, Smink LJ, Adlem EC, Allen JE, Burdick DB, Burren OS, Cavnor CC, Dolman GE, Flamez D, Friery KF. T1DBase: integration and presentation of complex data for type 1 diabetes research. Nucl Acid Res. 2006;35(Suppl 1):D742-46. .

  194. Lee HJ, Lee SH, Ha K-S, Jang HC, Chung W-Y, Kim JY, Chang Y-S, Yoo DH. Ubiquitous healthcare service using Zigbee and mobile phone for elderly patients. Int J Med Inform. 2009;78(3):193-98. .

  195. Shakil S, Khan AU. Infected foot ulcers in male and female diabetic patients: a clinico-bioinformative study. Ann Clin Microbiol Antimicrob. 2010;9(1):2. .

  196. Xu D, Xu Y, Uberbacher C. Computational tools for protein modeling. Curr Protein Peptide Sci. 2000;1(1):1-21. .

  197. Schwede T, Diemand A, Guex N, Peitsch MC. Protein structure computing in the genomic era. Res Microbiol. 2000;151(2):107-12. .

  198. Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 2003;31(13):3381-85. .

  199. Sanchez R, Sali A. Comparative protein structure modeling: introduction and practical examples with modeller. In: Protein Structure Prediction. New York: Springer; 2000. p. 97-129. .

  200. Wiltgen M, Tilz GP. Homology modelling: a review about the method on hand of the diabetic antigen GAD 65 structure prediction. Wiener Medizinische Wochenschrift. 2009;159(5-6):112-25. .

  201. Rao AA, Thota H, Adapala R, Changalasetty SB, Gumpeny RS, Akula A, Thota LS, Challa SR, Rao MN, Das UN. Proteomic analysis in diabetic cardiomyopathy using bioinformatics approach. Bioinform Biol Insights. 2008;2:BBI. S313. .

  202. Rao AA, Tayaru NM, Thota H, Changalasetty SB, Thota LS, Gedela S. Bioinformatic analysis of functional proteins involved in obesity associated with diabetes. Int J Biomed Sci. 2008;4(1):70. .

  203. Zhang Q, Fillmore TL, Schepmoes AA, Clauss TR, Gritsenko MA, Mueller PW, Rewers M, Atkinson MA, Smith RD, Metz TO. Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes. J Exper Med. 2013;210(1):191-203. .

  204. Bergman R, Ider YZ, Bowden CR, Cobelli C. Quantitative estimation of insulin sensitivity. Am J Physiol Endocrinol Metab Gastrointest Physiol. 1979;236:E667-E77. .

  205. Dalla Man C, Rizza RA, Cobelli C. Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng. 2007;54(10):1740-49. .

  206. Erlich HA, Valdes AM, McDevitt SL, Simen BB, Blake LA, McGowan KR, Todd JA, Rich SS, Noble JA, Consortium TDG. Next generation sequencing reveals the association of DRB3 02: 02 with type 1 diabetes. Diabetes. 2013;62(7):2618-22. .

  207. Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet. 2011;52(4): 413-35. .

  208. Mathieu C, Lahesmaa R, Bonifacio E, Achenbach P, Tree T. Immunological biomarkers for the development and progression of type 1 diabetes. Diabetologia. 2018;61 (11):2252-58. .

  209. Jagadeb M, Konkimalla VB, Rath SN, Das RP. Elucidation of the inhibitory effect of phytochemicals with Kir6. 2 wild-type and mutant models associated in type-1 diabetes through molecular docking approach. Genom Inform. 2014;12(4):283. .

  210. Pan Y, Wang Y, Zhao Y, Peng K, Li W, Wang Y, Zhang J, Zhou S, Liu Q, Li X. Inhibition of JNK phosphorylation by a novel curcumin analog prevents high glucose-induced inflammation and apoptosis in cardiomyocytes and the development of diabetic cardiomyopathy. Diabetes. 2014;63(10):3497-511. .

  211. Cleary PA, Orchard TJ, Genuth S, Wong ND, Detrano R, Backlund J-YC, Zinman B, Jacobson A, Sun W, Lachin JM. The effect of intensive glycemic treatment on coronary artery calcification in type 1 diabetic participants of the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes. 2006;55(12):3556-65. .

  212. Internationl Organization of Standardization (ISO). In vitro diagnostic test systems: requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus: ISO; 2003. .

  213. Nathan DM, Bayless M, Cleary P, Genuth S, Gubitosi-Klug R, Lachin JM, Lorenzi G, Zinman B, Group DER. Diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: advances and contributions. Diabetes. 2013;62(12):3976-86. .

  214. Skrivarhaug T, Bangstad H-J, Stene L, Sandvik L, Hanssen K, Joner G. Long-term mortality in a nationwide cohort of childhood-onset type 1 diabetic patients in Norway. Diabetologia. 2006;49(2):298-305. .

  215. Foster NC, Beck RW, Miller KM, Clements MA, Rickels MR, DiMeglio LA, Maahs DM, Tamborlane WV, Bergenstal R, Smith E. State of type 1 diabetes management and outcomes from the T1D exchange in 2016-2018. Diabetes Technol Therap. 2019;21(2):66-72. .

  216. McCoy RG, Van Houten HK, Ziegenfuss JY, Shah ND, Wermers RA, Smith SA. Increased mortality of patients with diabetes reporting severe hypoglycemia. Diabetes Care. 2012;35(9):1897-901. .

  217. Gruessner AC, Gruessner RW. Long-term outcome after pancreas transplantation: a registry analysis. Curr Op Organ Transplant. 2016;21(4):377-85. .