Library Subscription: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Published 6 issues per year

ISSN Print: 0743-4863

ISSN Online: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Relevance of Nanotechnology in Solving Oral Drug Delivery Challenges: A Perspective Review

Volume 37, Issue 5, 2020, pp. 407-434
DOI: 10.1615/CritRevTherDrugCarrierSyst.2020032583
Get accessGet access

ABSTRACT

Nanotechnology is opening up new opportunities in drug delivery, including oral delivery, and it may reduce toxicity and increase drug ability. Presently, researchers are expanding their knowledge in the development of oral nanomedicine to extend the scope of oral drug delivery and exhibit excellent platforms for drug transportation, target, and controlled release. The present review is an attempt to define updated oral nanostructured systems for the delivery of a wide range of drugs. The review also focuses on the use of different polymeric and other materials, technologies adopted, and benefits/drawbacks of delivery systems.

REFERENCES
  1. Singh B, Bandopadhyay S, Kapil R, Singh R, Katare OP. Self-emulsifying drug delivery systems (SEDDS): Formulation development, characterization, and applications. Crit Rev Ther Drug Carrier Syst. 2009;26(5):427-521.

  2. Singh B, Khurana RK, Garg B, Saini S, Kaur R. Stimuliresponsive systems with diverse drug delivery and biomedical applications: Recent updates and mechanistic pathways. Crit Rev Ther Drug Carrier Syst. 2017;34(3):209-55.

  3. Yewale C, Patil S, Kolate A, Kore G, Misra A. Oral absorption promoters: Opportunities, issues, and challenges. Crit Rev Ther Drug Carrier Syst. 2015;32(5):363-87.

  4. Patra JK, Das G, Fraceto LF, Campos EVR, Torres PM, Laura SA, Luis AD, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnol. 2018;16(71):1-33.

  5. Ferreira AS, Pereira P, Sampaio P, Coutinho PJ, Gama FM. Supramolecular assembled nanogel made of mannan. J Colloid Interface Sci. 2011;361(1):97-108.

  6. Thompson WP, Cheng P, Gadad K, Skene M, Smith G, Smith A, McKinnon RK. Uptake and transport of novel amphiphilic polyelectrolyte-insulin nanocomplexes by Caco-2 cells-towards oral insulin. Pharm Res. 2011;28(4):886-96.

  7. Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schaffler M, Schmid G, Simon U, Kreyling WG. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology. 2012 Feb;6(1):36-46.

  8. Iqbal J, Vigl C, Moser G, Gasteiger M, Perera G, Bernkop-Schnurch A. Development and in vivo evaluation of a new oral nanoparticulate dosage form for leuprolide based on polyacrylic acid. Drug Deliv. 2011 Aug;18(6):432-40.

  9. He X, Deng H, Hwang H. The current application of nanotechnology in food and agriculture. J Food Drug Anal. 2019 Jan;27(1):1-21.

  10. Roco MC. Towards a US national nanotechnology initiative. J Nanoparticle Res. 1999 Dec;1:435-38.

  11. Yin J. Chemical engineering and virology: Challenges and opportunities at the interface. Am Inst Chem Eng J. 2007 Jul;53(9):2202-10.

  12. Eijkel JCT, van den Berg A. The promise of nanotechnology for separation devices from a top-down approach to nature-inspired separation devices. Electrophoresis. 2006 Feb;27(3):677-85.

  13. Sheeparamatti BG, Sheeparamatti RB, Kadadevaramath JS. Nanotechnology: Inspiration from nature. IETE Tech Rev. 2007 Sep;24(1):5-8.

  14. Bittner AM. Biomolecular rods and tubes in nanotechnology. Naturwissenschaften. 2005 Feb;92(2):51-64.

  15. Roco MC. Nanotechnology: Convergence with modern biology and medicine. Curr Opin Biotechnol. 2003 Jun;14(3):337-46.

  16. Smith A. Nanotechnology: Lessons from mother nature. Chem Int. 2006 Sep;28(6):10-11.

  17. Bawa R. Patents and nanomedicine. Nanomedicine (Lond). 2007 Jun;2(3):351-74.

  18. Italia JL, Bhatt DK, Bhardwaj V, Tikoo K, Ravi Kumar MNV. PLGA nanoparticles for oral delivery of cyclosporine: Nephrotoxicity and pharmacokinetic studies in comparison to sandimmuneneoral. J Control Release. 2007 Jun;119(2):197-206.

  19. Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today. 2003 Dec;8(24):1112-20.

  20. Nimesh S, Manchanda R, Kumar R, Saxena A, Chaudhary P, Yadav V, Mozumdar S, Chandra R. Preparation, characterization and in vitro drug release studies of novel polymeric nanoparticles. Int J Pharm. 2006 Oct;323(1-2):146-52.

  21. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001 Jan;70(1-2):1-20.

  22. Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: Is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm. 2000 Jul;50(1):147-60.

  23. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003 Feb;55(3):329-47.

  24. Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. Colloidal carriers and blood-brain barrier (BBB) translocation: A way to deliver drugs to the brain? Int J Pharm. 2005 Jul;298(2):274-92.

  25. Ringe K, Walz CM, Sabel BA. Nanoparticles drug delivery to the brain. In: Nalwa HS, editor. Encyclopedia of nanoscience and nanotechnology. California, USA: American Scientific Publishers; 2004. p. 91-104.

  26. Patil JS, Dhadde SB, Chandakavathe BN. Nanostructure drug delivery system is an option to solve antimicrobial drug resistance: Perspective review. In: Mohapatra S, Ranjan S, Dasgupta N, Kumar R, Thomas S, editors. Characterization and biology of nanomaterials for drug delivery: Nanoscience and nanotechnology in drug delivery, micro and nano technologies. Cambridge, MA: Elsevier; 2019. p.165-197.

  27. Arias JL, Ruiz MA, Lopez-Viota M, Delgado AV. Poly(alkyl cyanoacrylate) colloidal particles as vehicles for antitumour drug delivery: A comparative study. Colloids Surf B. 2008 Mar;62(1):64-70.

  28. Kim IS, Kim SH. Development of polymeric nanoparticulate drug delivery systems: Evaluation of nanoparticles based on biotinylated poly(ethylene glycol) with sugar moiety. Int J Pharm. 2003 May;257(1-2):195-203.

  29. Viswanathan P, Muralidaran Y, Ragavan G. Challenges in oral drug delivery: A nano-based strategy to overcome. In: Andronescu E, Grumezescu AM, editors. Nano structure for oral medicine micro and nano technologies. Cambridge, MA: Elsevier; 2017. p.173-201.

  30. Tiark F, Landfester K, Antonietti M. Preparation of polymeric nanocapsules by mini emuslion polymerization. Langmuir. 2001 Jan 6;17(3):908-18.

  31. Jiang B, Hu L, Gao C, Shen J. Crosslinked polysaccharide nanocapsules: Preparation and drug release properties. Acta Biomater. 2006 Jan;2(1):9-18.

  32. Prego C, Torres D, Fernandez-Megia E, Novoa CR, Quinoa E, Alonso MJ. Chitosan-PEG nanocapsules as new carriers for oral peptide delivery: Effect of chitosan pegylation degree. J Control Release. 2006 Apr 10;111(3):299-308.

  33. Whelan J. Nanocapsules for controlled delivery. Drug Discov Today. 2001 Dec;6(23):1183-4.

  34. Sauer M, Meier W. Responsive nanocapsules. Chem Commun. 2001 Dec;2001(1):55-6.

  35. Kim IS, Kim SH. Development of polymeric nanoparticulate drug delivery systems: Evaluation of nanoparticles based on biotinylated poly(ethylene glycol) with sugar moiety. Int J Pharm. 2003 May;257(1-2):195-203.

  36. Damge C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release. 2007 Feb;117(2):163-70.

  37. Dai J, Nagai T, Wang X, Zhang T, Meng M, Zhang Q. pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. Int J Pharm. 2004 Aug;280(1-2):229-40.

  38. Arehalli SM, Kumbhar PS, Patil AB, Disouza JI, Patravale VB. Polymeric mixed micelles: Improving the anticancer efficacy of single-copolymer micelles. Crit Rev Ther Drug Carrier Syst. 2018 Dec;36(1):1-58.

  39. Jones MC, Leroux JC. Polymeric micelles: A new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999 Sep;48(2):101-11.

  40. Osada K, Christie RJ, Kataoka K. Polymeric micelles from poly(ethylene glycol) poly(amino acid) block copolymer for drug and gene delivery. J R Soc Interface. 2009 Jun;6(Suppl 3):S325-39.

  41. Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC. Block copolymer micelles: Preparation, characterization and application in drug delivery. J Control Release. 2005 Dec;109(1-3):169-88.

  42. Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003 Jul;92(7):1343-55.

  43. Tang N, Du G, Wang N, Liu C, Hang H, Liang W. Improving penetration in tumours with nanoassemblies of phospholipids and doxorubicin. J Natl Cancer Inst. 2007 Jul;99(13):1004-15.

  44. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia Celma MJ. Nanoemulsion. Curr Opin Colloid Inter Sci. 2005;10(3-4):102-10.

  45. Chiesa M, Garg J, Kang YT, Chen G. Thermal conductivity and viscosity of water in oil nanoemulsions. Coll Surf Physicochem Eng Asp. 2008 Aug;326(1-2):67-72.

  46. Brusewitz C, Schendler A, Funke A, Wagner T, Lipp R. Novel poloxamer based nanoemulsions to enhance the intestinal absorption of active compounds. Int J Pharm. 2007 Feb;329(1-2):173-81.

  47. Junghanns JAH, Muller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295-309.

  48. Shegokar R. Nanosuspensions: A new approach for organ and cellular targeting in infectious diseases. J Pharm Inv. 2013 Feb 14;43:1-26.

  49. Svenson S, Tomalia D. Dendrimers as nanoparticulate drug carriers. In: Torchilin V, editor. London: Imperial College Press; 2006. p. 277-99.

  50. Gilles ER, Frechet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005 Jan;10(1):35-43.

  51. Gupta U, Agashe HB, Asthana A, Jain NK. A review of in vitro, in vivo investigations on dendrimers: The novel nanoscopic drug carriers. Nanomedicine. 2006 Jun;2(2):66-73.

  52. Zamboni CW. Liposomal nanoparticle and conjugated formulations of anticancer agents. Clin Cancer Res. 2005 Dec;11(23):8230-4.

  53. Nagpal K, Kumar P, Mohan A, Thakur S. Dendrimers for therapeutic delivery: Compositions, charac-terizations, and current status. Crit Rev Ther Drug Carrier Syst. 2019;36(4):277-304.

  54. Lee CC, MacKay AJ, Frechet JMJ, Szoka CF. Designing dendrimers for biological applications. Nat Biotechnol. 2005 Dec;23(12):1517-26.

  55. Jang WD, Selim KMK, Lee CH, Kang IK. Bioinspired application of dendrimers: From bio-mimicry to biomedical applications. Prog Poly Sci. 2009 Jan;34(1):1-23.

  56. Courrier HM, Butz N, Vandamme TF. Pulmonary drug delivery systems: Recent developments and prospects. Crit Rev Ther Drug Carrier Syst. 2002;19(4-5):425-98.

  57. Arayne SM, Sultana N. Nanoparticles in drug delivery for the treatment of cancer. Pak J Pharm Sci. 2006;19(3): 258-68.

  58. Nijlah M, Freeman S, Attwood D, D'Emanuele A. In vitro evaluation of dendrimer prodrug for oral drug delivery. Int J Pharm. 2007 May;336(1):183-90.

  59. Nenadis N, Zafiropoulou I, Tsimidou M. Commonly used food antioxidants: A comparative study in dispersed systems. Food Chem. 2003 Jul;82(3):403-07.

  60. Ajazuddin SS. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010 0ct;81(7):680-9.

  61. Lim HJ, Cho EC, Shim J, Kim DH, An EJ, Kim J. Polymer associated liposomes as a novel delivery system for cyclodextrin bound drugs. J Colloid Interface Sci. 2008 Apr;320(2):460-8.

  62. Bakowsky H, Richter T, Kneuer C, Hoekstra D, Rothe U, Bendas G, Ehrhardt C, Bakowsky U. Adhesion characteristics and stability assessment of lectin-modified liposomes for site-specific drug delivery. Biochim Biophys Acta. 2008 Jan;1778(1):242-9.

  63. Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004 May;56(9):1257-72.

  64. Casadei MA, Cerreto F, Cesa S, Giannuzzo M, Feeney M, Marianecci C, Paolicelli P. Solid lipid nanoparticles incorporated in dextran hydrogels: A new drug delivery system for oral formulations. Int J Pharm. 2006 Nov;325(1-2):140-6.

  65. Dingler A, Gohla S. Production of solid lipid nanoparticles (SLN): Scaling up feasibilities. J Microencapsul. 2002 Jan-Feb;19(1):11-6.

  66. Souto EB, Gohla S, Muller RH. A novel approach based on lipid nanoparticles (SLN) for topical delivery of a-lipoic acid. J Microencap. 2005 Oct;22(6):581-92.

  67. Pandey R, Sharma S, Khuller GK. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis (Edinb). 2005 Sep-Nov;85(5-6):415-20.

  68. Lazar LF, Olteanu ED, Iuga R, Burz C, Achim M, Clichici S, Tefas LR, Nenu I, Tudor D, Baldea I, Filip GA. Solid lipid nanoparticles: Vital characteristics and prospective applications in cancer treatment. Crit Rev Ther Drug Carrier Syst. 2019;36(6):537-81.

  69. Tsai MJ, Huang YB, Wu PC, Fu YS, Kao YR, Fang JY, Tsai YH. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: Pharmacokinetic and behavioral evaluations. J Pharm Sci. 2011 Feb;100(2):547-57.

  70. Sanjula B, Shah FM, Javed A, Alka A. Effect of poloxamer 188 on lymphatic uptake of carvedilol loaded solid lipid nanoparticles for bioavailability enhancement. J Drug Target. 2009 Apr;17(3):249-56.

  71. Sarmento B, Martins S, Ferreira D, Souto, EB. Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomedicine. 2007;2(4):743-9.

  72. Liu B, Yang M, Li R, Ding Y, Qian X, Yu L, Jiang X. The antitumor effect of novel docetaxel loaded thermosensitive micelles. Eur J Pharm Biopharm. 2008 Jun;69(2):527-34.

  73. Kagaya H, Oba M, Miura Y, Koyama H, Ishii T, Shimada T, Takato T, Kataoka K, Miyata T. Impact of polyplex micelles installed with cyclic RGD peptide as ligand on gene delivery to vascular lesions. Gene Ther. 2012 Jan;19(1):61-9.

  74. Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J Microbiol Methods. 2019 May;160:130-42.

  75. Jose C, Amra K, Bhavsar C, Momin M, Omri A. polymeric lipid hybrid nanoparticles: Properties and therapeutic applications. Crit Rev Ther Drug Carrier Syst. 2018;35(6):555-88.

  76. Popat A, Jambhrunkar S, Zhang J, Yang J, Zhang H, Meka A, Chengzhong YU. Programmable drug release using bioresponsive mesoporous silica nanoparticles for site-specific oral drug delivery. Chem Commun. 2014 Feb 17;50:5547-50.

  77. Cristian MT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine. 2017 Jul 28;12:5421-31.

  78. Zhao M, Zhu B. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res Lett. 2016 Dec;11(1):207.

  79. Lombardo D, Mikhail KA, Caccamo MT. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomaterial. 2019 Feb;(12):1-26.

  80. Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nano-precipitation method. Drug Dev Ind Pharm. 1999 Apr;25(4):471-6.

  81. Patil JS, Kamalapur MV, Marapur SC, Kadam DV. Ionotropic gelation and polyelectrolyte complexation: The novel techniques to design hydrogel particulate sustained, modulated drug delivery system: A review. Digest J Nanomat Biostruct. 2010 March;5(1): 241-8.

  82. Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate. J Pharm Sci. 1993 Sep;82(9):912-7.

  83. Desai JV, Patil JS, Marapur SC, Kulkarni RV. Alginate-based microparticulate oral drug delivery system for rifampicin. Res J Pharm Tech. 2009 April-June;2(2):301-3.

  84. Martinez I, Lozano R, Teijon J, Blanco M. Synthesis and characterization of thiolated alginate-albumin nanoparticles stabilized by disulfide bonds. Evaluation as drug delivery systems. Carbohydr Polym. 2011;83(3):1311-21.

  85. El-Hag AA, AlArifi A. Characterization and in vitro evaluation of starch-based hydrogels as carriers for colon-specific drug delivery systems. Carbohydr Polym. 2009;78(4):725-30.

  86. Chen, L, Li X, Li L, Guo S. Ultraviolet-assisted synthesis of encapsulating adhesives and their application for lifetime improvement of organic light emitting diodes. Curr Appl Phys. 2007;9(4):746-9.

  87. Xiao SY, Tong CY, Liu XM, Yu DM, Liu QL, Xue CG, Tang DY, Zhao LJ. Preparation of folate conjugated starch nanoparticles and its application to tumor-targeted drug delivery vector. Chin Sci Bull. 2006 July;51:1151-5.

  88. Chin SK, Pang SC, Tay SH. Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr Polym. 2011 Oct;86(4):1817-19.

  89. Srinophakun T, Boonmee J. Preliminary study of conformation and drug release mechanism of doxorubicin conjugated glycol chitosan, via cisaconityl linkage, by molecular modeling. Int J Mol Sci. 2011;12(3):1672-83.

  90. Guerrero S, Teijon C, Muniz E, Teijon JM, Blanco MD. Characterization and in vivo evaluation of ketotifen loaded chitosan microspheres. Carbohydr Polym. 2010 March;79(4):1006-13.

  91. Nasti A, Zaki NM, Leonardis PD, Ungphaiboon S, Sansongsak P, Rimoli MG, Tirelli N. Chitosan/TPP and chitosan/TPP hyaluronic acid nanoparticles: Systematic optimization of the preparative process and preliminary biological evaluation. Pharm Res. 2009 Aug;26(8):1918-30.

  92. Brunel F, Veron L, David L, Domard A, Delair T. A novel synthesis of chitosan nanoparticles in reverse emulsion. Langmuir. 2008 Oct;24(20):11370-7.

  93. Krishna SA, Amareshwar P. Preparation of bovine serum albumin loaded chitosan nanoparticle using reverse micelle method. Res J Pharm Biol Chem Sci. 2011;2(3):837-46.

  94. Fang H, Huang J, Ding LY, Li MT, Chen Z. Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J Wuhan Univ Technol. 2009;24:42-47.

  95. Bigucci F, Luppi B, Cerchiara T. Chitosan/pectin polyelectrolyte complexes: Selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur J Pharm Sci. 2008 Dec; 35(5):435-41.

  96. Tang C, Wu H, Chen Z, Yang X. Formation and properties of glycinin rich and beta conglycinin rich soy protein isolate gels induced by microbial trans glutaminase. Food Res Int. 2006;39(1):87-97.

  97. Hezaveh H, Muhamad II. Impact of metal oxide nanoparticles on oral release properties of pH-sensitive hydrogel nanocomposites. Int J Biol Macromol. 2012 Jun;50(5):1334-40.

  98. Tapia C, Corbalan V, Costa E, Gai M, Yazdani-Pedram M. Study of the release mechanism of diltiazem hydrochloride from matrices based on chitosan-alginate and chitosan carrageenan mixtures. Biomacromolecules. 2005 Sep-Oct;6(5):2389-95.

  99. Willats WGT, McCartney L, Mackie W, Knox JP. Pectin: Cell biology and prospects for functional analysis. Plant Mol Biol. 2001 Sep;47(1-2):9-27.

  100. Lui L, Fishman ML, Kost J, Hicks KB. Pectin based systems for colon-specific drug delivery via oral route. Biomaterials. 2003 Aug;24(19):3333-43.

  101. Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery. Int J Pharm. 2001 Aug;224(1-2):19-38.

  102. Thirawong N, Thongborisute J, Takeuchi H, Sriamornsak P. Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin-liposome nano complexes. J Control Release. 2008 Feb;125(3):236-45.

  103. Rozier A, Mazuel C, Grove J, Plazonnet B. Functionality testing of gellan gum, a polymeric excipient material for ophthalmic dosage forms. Int J Pharm. 1997;153:191-8.

  104. Goyal R, Tripathi SK, Tyagi S, Ravi RK, Ansari KM, Shukla Y, Chowdhuri D, Kumar P, Gupta KC. Gellan gum blended PEI nanocomposites as gene delivery agents: Evidences from in vitro and in vivo studies. Eur J Pharm Biopharm. 2011 Sep;79(1):3-14.

  105. Babian G, Bowes JH. The structure and properties of collagen. In: Ward AG, Courts A, editors. The science and technology of gelatin. London: Academic Press; 1977. p. 1-27.

  106. Kaul G, Amiji M. Long circulating poly(ethylene glycol) modified gelatin nanoparticles for intracellular delivery. Pharm Res. 2002 Jul;19(7):1061-7.

  107. Saxena A, Tahir A, Kaloti M, Ali J. Effect of agar gelatin compositions on the release of salbutamol tablets. Int J Pharm Investig. 2011 Apr;1(2):93-8.

  108. Daocheng W, Mingxi W. A novel fluoride anion modified gelatin nanogel system for ultrasound triggered drug release. J Pharm Sci. 2008;11(4):32-45.

  109. Balthasar S, Michaelis K, Dinauer N, von Briesen H, Kreuter J, Langer K. Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Biomaterials. 2005 May;26(15):2723-32.

  110. Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Poly Sci. 2018;87:107-64.

  111. Segota S, Tezak D. Spontaneous formation of vesicles. Adv Colloid Interface Sci. 2006 Sep; 121(1-3):51-75.

  112. Huang SL. Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev. 2008 Jun;60(10): 1167-76.

  113. Huo J, Zhou SW. New research on development of solid lipid nanoparticles. J Med Colleges PLA. 2007;22(6):385-90.

  114. Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev. 2004 May;56(9):1273-89.

  115. Pikaksuteepong T, Davies NM, Tucker IG, Rades T. Factors influencing the entrapment of hydrophilic compounds in nanocapsules prepared by interfacial polymerization of water in oil microemulsions. Eur J Pharm Biopharm. 2002 May;53(3):335-42.

  116. Tal-Figiel B, Figiel W. Micro and nanoemulsions in cosmetic and pharmaceutical products. J Disp Sci Tech. 2008 Apr;29(4):611-6.

  117. Catarina PR, Ronald JN, Antonio JR, Francisco V. Nanoencapsulation: Methods for preparation of drug-loaded polymeric nanoparticles nanomedicine. Nanomedicine. 2006 Mar;2(1):8-21.

  118. Ganachaud F, Katz JL. Nanoparticles and nanocapsules created using the ouzo effect: Spontaneous emulsification as an alternative to ultrasonic and high-shear devices. Chemphyschem. 2005 Feb;6(2):209-16.

  119. Quintanar-Guerrero D, Allemann E, Fessi H, Doelker E. Preparation techniques and mechanism of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm. 1998 Dec;24(12):1113-28.

  120. Allemann E, Leroux JC, Gurny R. Polymeric nano-microparticles for the oral delivery of peptides and peptidomimetics. Adv Drug Deliv Rev. 1998 Dec;34(2-3):171-89.

  121. Lambert G, Fattal E, Couvreur P. Nanoparticulate system for the delivery of antisense oligonucleotides. Adv Drug Deliv Rev. 2001 Mar;47(1):99-112.

  122. Jeong YI, Cho CS, Kim SH, Ko KS, Kim SI, Shim YH, Nah JW. Preparation of poly(dl-lactide-co-glycolide) nanoparticles without surfactant. J Appl Polym Sci. 2001 Mar;80(12):2228-36.

  123. Galindo-Rodriguez S, Allemann E, Fessi H, Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and no precipitation methods. Pharm Res. 2004 Aug;21(8):1428-39.

  124. Errico C, Bartoli C, Chiellini F, Chiellini E. Poly(hydroxy alkanoates) based polymeric nanoparticles for drug delivery. J Biomed Biotechno. 2009 Sep 17;2009:571702.

  125. Chronopoulou L, Fratoddi I, Palocci C, Venditti I, Russo MV. Osmosis based method drives the self-assembly of polymeric chains into micro and nanostructures. Langmuir. 2009;25(19)11940-6.

  126. Sane A, Thies MC. Effect of material properties and processing conditions on RESS of poly(l-lactide). J Supercrit Flu. 2007;40(1):134-43.

  127. Sun YP, Rolling HW, Bandara J, Meziani JM, Bunker CE. Preparation and processing of nanoscale materials by supercritical fluid technology. In: Sun YP, editor. Supercritical fluid technology in materials science and engineering: Synthesis, properties, and applications. NewYork: MarcelDekker; 2002. p. 491-576.

  128. Vauthier C, Dubernet C, Fattal E, Pinto ACP. Poly(alkyl cyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev. 2003 Apr;55(4):519-48.

  129. Crespy D, Stark M, Hoffmann RC, Ziener U, Landfester K. Polymeric nanoreactors for hydrophilic reagent synthesized by interfacial polycondensation on mini emulsion droplets. Macro Mole. 2007;40(9):3122-35.

  130. Watnasirichaikul S, Davies NM, Rades T, Tucker IG. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm Res. 2000 Jun;17(6):684-9.

  131. Dustgani A, Farahania EV, Imanib M. Preparation of chitosan nanoparticles loaded by dexamethasone sodium phosphate. Iran J Pharm Sci. 2008;4(2):111-4.

  132. Schwarz C. Solid lipid nanoparticles (SLN) for controlled drug delivery: Production, characterization and sterilization. J Control Release. 1994 Apr;30(1):83-96.

  133. Handy RD, Shaw BJ. Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology. Heal Ris Soc. 2007;9(2):125-44.

  134. Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA. Emerging nanopharmaceuticals. Nanomedicine. 2008 Dec;4(4):273-82.

  135. Sinha V, Singh A, Kumar RV, Singh S, Kumria R, Bhinge J. Oral colon-specific drug delivery of protein and peptide drugs. Crit Rev Ther Drug Carrier Syst. 2007;24(1):63-92.

  136. Silki Sinha VR. Emerging potential of nanosuspension-enabled drug delivery: An overview. Crit Rev Ther Drug Carrier Syst. 2015;32(6):535-57.

CITED BY
  1. Choi Goeun, Piao Huiyan, Rejinold N. Sanoj, Yu Seungjin, Kim Ki-yeok, Jin Geun-woo, Choy Jin-Ho, Hydrotalcite–Niclosamide Nanohybrid as Oral Formulation towards SARS-CoV-2 Viral Infections, Pharmaceuticals, 14, 5, 2021. Crossref

  2. Moghaddam Faezeh Abbaspour, Ebrahimian Mahboubeh, Oroojalian Fatemeh, Yazdian-Robati Rezvan, Kalalinia Fatemeh, Tayebi Lobat, Hashemi Maryam, Effect of thymoquinone-loaded lipid–polymer nanoparticles as an oral delivery system on anticancer efficiency of doxorubicin, Journal of Nanostructure in Chemistry, 12, 1, 2022. Crossref

  3. Chandakavathe Baburao N., Kulkarni Ravindra G. , Dhadde Shivsharan B., Grafting of Natural Polymers and Gums for Drug Delivery Applications: A Perspective Review , Critical Reviews™ in Therapeutic Drug Carrier Systems, 39, 6, 2022. Crossref

  4. Suvarna Vasanti, Sawant Niserga, Desai Namita, A Review on Recent Advances in Mannose-Functionalized Targeted Nanocarrier Delivery Systems in Cancer and Infective Therapeutics, Critical Reviews™ in Therapeutic Drug Carrier Systems, 40, 2, 2023. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain