Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Therapeutic Drug Carrier Systems
IF: 2.9 5-Year IF: 3.72 SJR: 0.736 SNIP: 0.818 CiteScore™: 4.6

ISSN Print: 0743-4863
ISSN Online: 2162-660X

Volume 37, 2020 Volume 36, 2019 Volume 35, 2018 Volume 34, 2017 Volume 33, 2016 Volume 32, 2015 Volume 31, 2014 Volume 30, 2013 Volume 29, 2012 Volume 28, 2011 Volume 27, 2010 Volume 26, 2009 Volume 25, 2008 Volume 24, 2007 Volume 23, 2006 Volume 22, 2005 Volume 21, 2004 Volume 20, 2003 Volume 19, 2002 Volume 18, 2001 Volume 17, 2000 Volume 16, 1999 Volume 15, 1998 Volume 14, 1997 Volume 13, 1996 Volume 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.v20.i5.20
47 pages

Polymeric Micelles for Delivery of Poorly Water-Soluble Compounds

Glen S. Kwon
School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA


Amphiphilic polymers assemble into nanoscopic supramolecular core-shell structures, termed polymeric micelles, which are under extensive study for drug delivery. There are several reasons for this growing interest. Polymeric micelles may be safe for parenteral administration relative to existing solubilizing agents (for instance, Cremophor EL), permitting an increase in the dose of potent yet toxic and poorly water soluble compounds. Polymeric micelles solubilize important poorly water-soluble compounds, such as amphotericin B (AmB), propofol, paclitaxel, and photosensitizers. A major factor in drug solubilization is the compatibility of a drug and a core of a polymeric micelle. In this context, we may consider Pluronics®, poly(ethylene glycol) (PEG)-phospholipid conjugates, PEG-b-poly(ester)s, and PEG-b-poly(L-amino acid)s for drug delivery. Polymeric micelles may circulate for prolonged periods in blood, evade host defenses, and gradually release drug. Thus, they may show a preferential accumulation at sites of disease such as solid tumors. Polymeric micelles inhibit p-glycoprotein at drug-resistant tumors, gastrointestinal tract, and blood/brain barrier, perhaps providing a way to overcome drug resistance in cancer and increase drug absorption from the gut and drug absorption into the brain. Lastly, polymeric micelles may reduce the self-aggregation of polyene antibiotics, key membrane-acting drugs used to combat lifethreatening systemic fungal diseases. In this way, they may reduce its dose-limiting toxicity without a loss of antifungal activity.

Articles with similar content:

Nano-Aggregates: Emerging Delivery Tools for Tumor Therapy
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.30, 2013, issue 6
Vinod Kumar Sharma, Ankit Jain, Vandana Soni
Polymeric Drug-Delivery Systems: Role in P-gp Efflux System Inhibition
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.32, 2015, issue 3
Saahil Arora , Preeti Gupta, Tarun Garg, M. Tanmay
Use of Vitamin B12 Conjugates to Deliver Protein Drugs by the Oral Route
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.15, 1998, issue 6
Gregory J. Russell-Jones
Lipid Materials for Topical and Transdermal Delivery of Nanoemulsions
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.31, 2014, issue 5
R. Jayachandra Babu, Kasturi R. Pawar
Ligand-Appended BBB-Targeted Nanocarriers (LABTNs)
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.32, 2015, issue 2
Ankit Jain, Sanjay Kumar Jain