Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Therapeutic Drug Carrier Systems
IF: 2.9 5-Year IF: 3.72 SJR: 0.573 SNIP: 0.551 CiteScore™: 2.43

ISSN Print: 0743-4863
ISSN Online: 2162-660X

Volumes:
Volume 36, 2019 Volume 35, 2018 Volume 34, 2017 Volume 33, 2016 Volume 32, 2015 Volume 31, 2014 Volume 30, 2013 Volume 29, 2012 Volume 28, 2011 Volume 27, 2010 Volume 26, 2009 Volume 25, 2008 Volume 24, 2007 Volume 23, 2006 Volume 22, 2005 Volume 21, 2004 Volume 20, 2003 Volume 19, 2002 Volume 18, 2001 Volume 17, 2000 Volume 16, 1999 Volume 15, 1998 Volume 14, 1997 Volume 13, 1996 Volume 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.v25.i1.20
pages 63-116

Solid Self-Nanoemulsifying Delivery Systems as a Platform Technology for Formulation of Poorly Soluble Drugs

Tripta Bansal
Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
Gulam Mustafa
Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
Zeenat I. Khan
Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
Farhan Jalees Ahmad
Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
Roop K. Khar
Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
Sushama Talegaonkar
Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India

ABSTRACT

New drug discovery programs produce molecules with poor physico-chemical properties, making delivery of these molecules at the right proportion into the body a big challenge to the formulation scientist. The various options available to overcome the hurdle include solvent precipitation, micronisation/nanonization using high-pressure homogenization or jet milling, salt formation, use of microspheres, solid dispersions, cogrinding, complexation, and many others. Self-nanoemulsifying systems (SNES) form one of the most popular and commercially viable approaches for delivery of poorly soluble drugs exhibiting dissolution rate limited absorption, especially those belonging to the Biopharmaceutics Classification System II/IV. SNES are essentially an isotropic blend of oils, surfactants, and/or cosolvents that emulsify spontaneously to produce oil in water nanoemulsion when introduced into aqueous phase under gentle agitation. Conventional SNES consist of liquid forms filled in hard or soft gelatin capsules, which are least preferred due to leaching and leakage phenomenon, interaction with capsule shell components, handling difficulties, machinability, and stability problems. Solidification of these liquid systems to yield solid self-nanoemulsifying systems (SSNES) offer a possible solution to the mentioned complications, and that is why these systems have attracted wide attention. Other than the advantages and wide application of SSNEDS, the present paper focuses on formulation considerations, selection, and function of solidifying excipients; techniques of preparation; and case studies of drugs selected from different therapeutic categories. Developments in the techniques for in vitro evaluation of SSNEDS have also been discussed.


Articles with similar content:

Submicron Emulsions and Their Applications in Oral Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.33, 2016, issue 3
Veenu Mundada, Krutika Sawant, Mitali Patel
Recent Advances in Self-Emulsifying Drug Delivery Systems (SEDDS)
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.31, 2014, issue 2
Premjeet Singh Sandhu, Ravinder Kaur, Sarwar Beg, Bhupinder Singh, Om Parkash Katare, Rajneet Kaur Khurana
Phospholipids: A Novel Adjuvant in Herbal Drug Delivery Systems
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.31, 2014, issue 5
Mohammed Shuaib Khan, K. Krishnaraj
In Situ Gel-Forming System: An Attractive Alternative for Nasal Drug Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.30, 2013, issue 5
Yanhua Jia, Jianli Ma, Xiaoqing Wang, Lei Gao, Xiang Li, Guiyang Liu, Qingzhe Zhang, Shaolai Guo
Updated Progress of Nanocarrier-Based Intranasal Drug Delivery Systems for Treatment of Brain Diseases
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.35, 2018, issue 5
Min Chen, Ying Fan, Xuefeng Xia, Wen Wu, Philippe Maincent, Jinqiang Zhang