Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Special Topics & Reviews in Porous Media: An International Journal
ESCI SJR: 0.277 SNIP: 0.52 CiteScore™: 1.3

ISSN Print: 2151-4798
ISSN Online: 2151-562X

Special Topics & Reviews in Porous Media: An International Journal

DOI: 10.1615/SpecialTopicsRevPorousMedia.2018025914
pages 155-169

EFFECTS OF THE PRESENCE OF FINES ON THE PERFORMANCE OF LOW SALINITY WATERFLOODING

Mohammad Mahboubi Fouladi
Institute of Petroleum Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
Behzad Rostami
Institute of Petroleum Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
Peyman Pourafshari
School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan

ABSTRACT

In recent years, low salinity water flooding, among all enhanced oil recovery (EOR) methods, has received much attention both in academic research and industry. Promising results of increase in ultimate oil recovery with change in salinity of injected brine have been shown through the laboratory and field tests data. Even though there are many published works about this subject, there is still ambiguity regarding unpredictably large variation in responses. So, the fundamental understanding of the underlying mechanisms and the explanation of laboratory experiments need to be addressed. In this study, parallel laboratory core floods including single and two-phase experiments were performed to investigate the effect of brine and low salinity waterflooding on oil recovery, wettability, absolute and relative permeabilities. Single-phase flooding experiments were carried out to understand the behavior of the water/rock system and establish a baseline to interpret multiphase experiments. In two-phase waterflooding, it was observed that the presence of kaolinite clays and silica fine particles along with their mobilization plays a vital role in the sensitivity of oil recovery to salinity. Contrary to some previous studies, in this work oil recovery was obtained in tertiary mode, which reveals that enhanced recovery is related to the combination of fines migration and chemical mechanisms phenomena. However, incremental oil recovery without the presence of kaolinite and multivalent ions was observed. Furthermore, we noticed the reflection of crude oil/brine/rock (COBR) interactions at microscopic scale through the alteration of permeability, potential of hydrogen (pH), conductivity, and the turbidity in the effluent at macroscopic scale.


Articles with similar content:

EXPERIMENTAL STUDY ON THE WETTABILITY ALTERATION MECHANISM OF ION TUNING WATERFLOODING
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 4
Qingjie Liu, Jingyao Wang, Jiazhong Wu, Weifeng Lv, Shijing Xu
NUMERICAL INVESTIGATIONS ON FORMATION CONDITIONS OF THE THIEF ZONE BY LEVEL SET METHOD
Journal of Porous Media, Vol.22, 2019, issue 2
Chunlei Yu , Shuoliang Wang, Hui Zhao
MACROSCOPIC AND MICROSCOPIC INVESTIGATION OF ALKALINE−SURFACTANT−POLYMER FLOODING IN HEAVY OIL RECOVERY USING FIVE-SPOT MICROMODELS: THE EFFECT OF SHALE GEOMETRY AND CONNATE WATER SATURATION
Journal of Porous Media, Vol.18, 2015, issue 8
Amin Mehranfar, Davood Rashtchian, Mohsen Masihi, Mohammad Hossein Ghazanfari
A MODEL FOR LOW SALINITY FLOODING EXPERIMENTS: DISSOLUTION AND ION EXCHANGE
Journal of Porous Media, Vol.18, 2015, issue 3
Helmer Andre Friis, Aruoture Voke Omekeh, Steinar Evje, Ingebret Fjelde
INVESTIGATION OF THE FEASIBILITY OF CRUDE OIL VISCOSITY CHANGE UNDER AN APPLIED ELECTRICAL FIELD IN POROUS MEDIA AND ITS SIGNIFICANCE FOR TRANSPORT PHENOMENA
Journal of Porous Media, Vol.22, 2019, issue 6
George F. Pinder, Maria Peraki, Ehsan Ghazanfari