Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Oncogenesis
SJR: 0.631 SNIP: 0.503 CiteScore™: 2.2

ISSN Print: 0893-9675
ISSN Online: 2162-6448

Critical Reviews™ in Oncogenesis

DOI: 10.1615/CritRevOncog.2019031256
pages 235-242

Type 2 Diabetes and Cancer: The Nitric Oxide Connection

Zahra Bahadoran
Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Parvin Mirmiran
Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Asghar Ghasemi
Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Khosrow Kashfi
Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, USA


Type 2 diabetes (T2DM) is now considered an independent risk factor for the development of some types of cancers, including liver, pancreas, endometrium, colon, rectum, breast, and bladder cancers. Several underlying mechanisms have been proposed that connect T2DM and cancer: hyperglycemia, hyperinsulinemia, increased levels of free steroid and peptide hormones, oxidative stress, and proinflammatory cytokines. Because nitric oxide (NO), a multifunctional gaseous signaling molecule, plays a critical role in carcinogenesis and tumor growth progression, undesirable changes of the NO system in T2DM may be an important missing link between these two pathogenic conditions. Increased inducible NO synthase (iNOS) activity is seen in T2DM (due to inflammatory cytokines, mitochondrial dysfunction, hyperglycemia and hypoxia), where detrimental amounts of NO can result in the initial carcinogenic transformation of normal cells and progression to malignancy. The uncoupling of endothelial NO synthase (eNOS) and increased generation of free radicals in hyperglycemic conditions can also lead to the formation of highly reactive nitrogen species such as peroxynitrite, which can lead to DNA damage, carcinogenic mutations, and activation of critical pathways involved in cell proliferation and apoptosis. In this review, we focused on the hypothesis that the imbalanced NO metabolism in pathologic conditions such as T2DM may contribute to the development of cancer. Overall, current evidence strongly suggests that an imbalanced NO metabolism in T2DM may contribute to the development of cancer.


  1. Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R. Diabetes and cancer. Endocrine Related Cancer. 2009;16(4):1103-23.

  2. Bao C, Yang X, Xu W, Luo H, Xu Z, Su C, Qi X. Diabetes mellitus and incidence and mortality of kidney cancer: a meta-analysis. J Diabetes Complications. 2013;27(4):357-64.

  3. Ben Q, Xu M, Ning X, Liu J, Hong S, Huang W, Zhang H, Li Z. Diabetes mellitus and risk of pancreatic cancer: a meta-analysis of cohort studies. Eur J Cancer (Oxford, UK: 1990). 2011;47(13):1928-37.

  4. Bonovas S, Filioussi K, Tsantes A. Diabetes mellitus and risk of prostate cancer: a meta-analysis. Diabetologia. 2004;47(6):1071-8.

  5. Chen S, Tao M, Zhao L, Zhang X. The association between diabetes/hyperglycemia and the prognosis of cervical cancer patients: A systematic review and meta-analysis. Medicine. 2017;96(40):e7981-e.

  6. Everhart J, Wright D. Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA. 1995;273(20):1605-9.

  7. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D. Diabetes and cancer: a consensus report. Diabetes Care. 2010;33(7):1674-85.

  8. American Diabetes Association. 4. Comprehensive medical evaluation and assessment of comorbidities: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S34-S45.

  9. Hua F, Yu JJ, Hu ZW. Diabetes and cancer, common threads and missing links. Cancer Lett. 2016;374(1):54- 61.

  10. Ryu TY, Park J, Scherer PE. Hyperglycemia as a risk factor for cancer progression. Diabetes Metabol J. 2014;38(5):330-6.

  11. Cohen DH, LeRoith D. Obesity, type 2 diabetes, and cancer: the insulin and IGF connection. Endocrine Related Cancer. 2012;19(5):F27-45.

  12. Collins KK. The diabetes-cancer link. Diabetes Spectr. 2014;27(4):276-80.

  13. Gallagher EJ, LeRoith D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev. 2015;95(3):727-48.

  14. Ghasemi A, Zahediasl S. Is nitric oxide a hormone? Iran Biomed J. 2011;15(3):59-65.

  15. Dai Z, Wu Z, Yang Y, Wang J, Satterfield MC, Meininger CJ, Bazer FW, Wu G. Nitric oxide and energy metabolism in mammals. BioFactors. 2013;39(4):383-91.

  16. Carlstrom M, Liu M, Yang T, Zollbrecht C, Huang L, Peleli M, Borniquel S, Kishikawa H, Hezel M, Persson AE, Weitzberg E, Lundberg JO. Cross-talk between nitrate-nitrite-NO and NO synthase pathways in control of vascular NO homeostasis. Antioxidants Redox Signaling. 2015;23(4):295-306.

  17. Stuehr DJ, Santolini J, Wang Z-Q, Wei C-C, Adak S. Update on mechanism and catalytic regulation in the NO synthases. J Bio Chem. 2004;279(35):36167-70.

  18. Villanueva C, Giulivi C. Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Rad Bio Med. 2010;49(3):307-16.

  19. Murad F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci Rep. 2004;24(4-5):452-74.

  20. Kovacs I, Lindermayr C. Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation. Frontiers Plant Sci. 2013;4(137). doi: 10.3389/fpls.2013.00137.

  21. Thomas DD, Flores-Santana W, Switzer CH, Wink DA, Ridnour LA. Determinants of nitric oxide chemistry: impact of cell signaling processes. Nitric Oxide (Second Edition). New York: Elsevier; 2010. p. 3-25.

  22. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315-424.

  23. Hsu Y-C, Lee P-H, Lei C-C, Ho C, Shih Y-H, Lin C-L. Nitric oxide donors rescue diabetic nephropathy through oxidative-stress-and nitrosative-stress-mediated Wnt signaling pathways. J Diabetes Investig. 2015;6(1):24-34.

  24. Henstridge DC, Kingwell BA, Formosa MF, Drew BG, McConell GK, Duffy SJ. Effects of the nitric oxide donor, sodium nitroprusside, on resting leg glucose uptake in patients with type 2 diabetes. Diabetologia. 2005;48(12):2602-8.

  25. Huang Z, Fu J, Zhang Y. Nitric oxide donor-based cancer therapy: advances and prospects. J Med Chem. 2017;60(18):7617-35.

  26. Vincent MA, Montagnani M, Quon MJ. Molecular and physiologic actions of insulin related to production of nitric oxide in vascular endothelium. Curr Diab Rep. 2003;3(4):279-88.

  27. Oelze M, Schuhmacher S, Daiber A. Organic nitrates and nitrate resistance in diabetes: the role of vascular dysfunction and oxidative stress with emphasis on antioxidant properties of pentaerithrityl tetranitrate. Exp Diabetes Res. 2010;2010:213176.

  28. Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E. Nitric oxide and mitochondria in metabolic syndrome. Front Physiol. 2015;6:20. doi: 10.3389/fphys.2015.00020.

  29. Bahadoran Z, Ghasemi A, Mirmiran P, Azizi F, Hadaegh F. Beneficial effects of inorganic nitrate/nitrite in type 2 diabetes and its complications. Nutr Metabol. 2015;12(1):16.

  30. Lin KY, Ito A, Asagami T, Tsao PS, Adimoolam S, Kimoto M, Tsuji H, Reaven GM, Cooke JP. Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation. 2002;106(8):987-92.

  31. Romero MJ, Platt DH, El-Remessy AB, Tawfik HE, Caldwell RB, Caldwell RW. Does elevated arginase activity contribute to diabetes-induced endothelial dysfunction? J FederAm Soc Exper Biol. 2006;20(Meeting Abstract Suppl):A1125.

  32. Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Rad Bio Med. 2014;73:383-99.

  33. Penarando J, Aranda E, Rodriguez-Ariza A. Immunomodulatory roles of nitric oxide in cancer: tumor microenvironment says "NO" to antitumor immune response. Trans Res. 2019.

  34. Monteiro HP, Costa PE, Reis AK, Stern A. Nitric oxide: Protein tyrosine phosphorylation and protein S-nitrosylation in cancer. Biomed J. 2015;38(5):380-8.

  35. Chang CF, Diers AR, Hogg N. Cancer cell metabolism and the modulating effects of nitric oxide. Free Rad Bio Med. 2015;79:324-36.

  36. Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nature Rev Cancer. 2006;6(7):521-34.

  37. Burke AJ, Sullivan FJ, Giles FJ, Glynn SA. The yin and yang of nitric oxide in cancer progression. Carcinogenesis. 2013;34(3):503-12.

  38. Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2001;2(3):149-56.

  39. Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol. 2015;6:334-43.

  40. Choudhari SK, Chaudhary M, Bagde S, Gadbail AR, Joshi V Nitric oxide and cancer: a review. World J Surg Oncol. 2013;11:118. doi: 10.1186/1477-7819-11-118.

  41. Monteiro HP, Rodrigues EG, Amorim Reis AKC, Longo LS, II, Ogata FT, Moretti AIS, da Costa PE, Teodoro ACS, Toledo MS, Stern A. Nitric oxide and interactions with reactive oxygen species in the development of melanoma, breast, and colon cancer: a redox signaling perspective. Nitric Oxide. 2019;89:1-13.

  42. Dimmeler S, Zeiher AM. Nitric oxide and apoptosis: another paradigm for the double-edged role of nitric oxide. Nitric Oxide. 1997;1(4):275-81.

  43. Choi BM, Pae HO, Jang SI, Kim YM, Chung HT. Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J Biochem Mol Biol. 2002;35(1):116-26.

  44. Thomsen LL, Lawton FG, Knowles RG, Beesley JE, Riveros-Moreno V, Moncada S. Nitric oxide synthase activity in human gynecological cancer. Cancer Res.1994;54(5):1352-54.

  45. Islam BU, Habib S, Ahmad P, Allarakha S, Moinuddin, Ali A. Pathophysiological role of peroxynitrite induced DNA damage in human diseases: a special focus on poly(ADP-ribose) polymerase (PARP). Indian J Clin Biochem. 2015;30(4):368-85.

  46. Brune B. The intimate relation between nitric oxide and superoxide in apoptosis and cell survival. Antioxidants Redox Signaling. 2005;7(3-4):49-507.

  47. Kisley LR, Barrett BS, Bauer AK, Dwyer-Nield LD, Barthel B, Meyer AM, Thompson DC, Malkinson AM. Genetic ablation of inducible nitric oxide synthase decreases mouse lung tumorigenesis. Cancer Res. 2002;62(23):6850-56.

  48. Zhu Y, Jiang H, Chen Z, Lu B, Li J, Peng Y, Shen X. The genetic association between iNOS and eNOS polymorphisms and gastric cancer risk: a meta-analysis. OncoTargets Ther. 2018;11:2497-507.

  49. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860-67.

  50. Hussain SP, He P, Subleski J, Hofseth LJ, Trivers GE, Mechanic L, Hofseth AB, Bernard M Schwank J, Nguyen G, Mathe E, Djurickovic D, Haines D, Weiss J, Back T, Gruys E, Laubach VE, Wiltrout RH, Harris CC. Nitric oxide is a key component in inflammation-accelerated tumorigenesis. Cancer Res. 2008;68(17):7130-36.

  51. O'Rourke RW. Obesity and cancer: at the crossroads of cellular metabolism and proliferation. Surg Obesity Relat Dis. 2014;10(6):1208-19.

  52. Garrido P, Shalaby A, Walsh EM, Keane N, Webber M, Keane MM, Sullivan FJ, Kerin MJ, Callagy G, Ryan AE, Glynn SA. Impact of inducible nitric oxide synthase (iNOS) expression on triple negative breast cancer outcome and activation of EGFR and ERK signaling pathways. Oncotarget. 2017;8(46):80568-88.

  53. Olson N, van der Vliet A. Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease. Nitric Oxide. 2011;25(2):125-37.

  54. Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29(5):625-34.

  55. Pance A. Nitric oxide and hormones in breast cancer: allies or enemies? Future Oncol (London, UK). 2006;2(2):275-88.

  56. Numajiri N, Takasawa K, Nishiya T, Tanaka H, Ohno K, Hayakawa W, Asada M, Matsuda H, Azumi K, Kamata H, Nakamura T, Hara H, Minami M, Lipton SA, Uehara T. On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc Natl Acad Sci U S A. 2011;108(25):10349-54.

Articles with similar content:

Type 2 Diabetes and Cancer: An Overview of Epidemiological Evidence and Potential Mechanisms
Critical Reviews™ in Oncogenesis, Vol.24, 2019, issue 3
Farhad Hosseinpanah, Asghar Ghasemi, Parvin Mirmiran, Zahra Bahadoran
Interleukin-33 and its Receptor in Pulmonary Inflammatory Diseases
Critical Reviews™ in Immunology, Vol.35, 2015, issue 6
Jing Zhao, Yutong Zhao
Tumor Suppressor Roles of the Denitrosylase GSNOR
Critical Reviews™ in Oncogenesis, Vol.21, 2016, issue 5-6
Salvatore Rizza, Giuseppe Filomeni
Chemoprevention of Colon Cancer by iNOS-Selective Inhibitors
Forum on Immunopathological Diseases and Therapeutics, Vol.3, 2012, issue 2
Chinthalapally V. Rao, Naveena B. Janakiram
Hypoxia-Induced Signaling Promotes Prostate Cancer Progression: Exosomes Role as Messenger of Hypoxic Response in Tumor Microenvironment
Critical Reviews™ in Oncogenesis, Vol.20, 2015, issue 5-6
Gati K. Panigrahi, Gagan Deep