Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Heat Transfer Research

Impact factor: 0.930

ISSN Print: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016013913
pages 955-968

APPLICATION OF ENTROPY GENERATION MINIMIZATION FOR OPTIMIZING THE GEOMETRY OF A DOUBLE-TUBE HEAT EXCHANGER

Rafal Laskowski
Institute of Heat Engineering, 21/25 Nowowiejska Str., 00-665, Warsaw, Poland
Pawel Tomczak
Institute of Heat Engineering, 21/25 Nowowiejska Str., 00-665, Warsaw, Poland
Maciej Jaworski
Institute of Heat Engineering, 21/25 Nowowiejska Str., 00-665, Warsaw, Poland

ABSTRACT

The paper presents an analysis of entropy generation for a double-tube heat exchanger with water as heat transferring fluids. Four heat exchanger configurations were considered: with the heating fluid in the inner and outer tubes, and with parallel and counter flows. The aim of the analysis was to determine the tube inner [inner tube] diameter for which entropy generation is minimum. The entropy generation resulting from heat flow and from resistance to flow (pressure losses) of heat transferring fluids were taken into account. The minimum of entropy generation as a function of the inner tube diameter was found for two cases: for the counter and parallel flows when the cold fluid flows through the inner tube and the hot fluid passes through the space between the tubes. For two other cases of the counter and parallel flows when the hot fluid flows through the inner tube and the cold fluid passes through the space between the tubes, entropy generation is approximately linearly decreasing with the increase in the inner tube diameter, and there is no entropy generation extremum (minimum) in the range of dimensions analyzed in the study.