Library Subscription: Guest
Heat Transfer Research

Published 18 issues per year

ISSN Print: 1064-2285

ISSN Online: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

AN OVERVIEW OF HEAT TRANSFER ENHANCEMENT LITERATURE IN 2019

Volume 51, Issue 9, 2020, pp. 807-824
DOI: 10.1615/HeatTransRes.2020033880
Get accessDownload

ABSTRACT

Advances in modern technology with increasing power density call for new technologies of heat transfer enhancement. This article briefly reviews archival journal literature on enhanced heat transfer research and development published in 2019 in the English language. Since a large number of articles were published, the selected studies are focused and grouped into conduction, convection, radiation, phase-change materials energy storage, and high-performance heat exchange devices. The methodologies for enhancing convective heat transfer are further categorized into passive, active, and compound techniques. The review on heat conduction focuses on the micro/nanoscale aspects, interfaces and high-conductivity carbon materials. The emphasis of thermal radiation is on near-field radiation, solar energy, and metamaterial. Recent progress in applying machine learning to enhanced heat transfer research in nanofluids, solar energy, and heat exchangers is also discussed.

REFERENCES
  1. Abedini, A., Armaghani, T., and Chamkha, A.J., MHD Free Convection Heat Transfer of a Water-Fe3O4 Nanofluid in a Baffled C-Shaped Enclosure, J. Therm. Anal. Calorim., vol. 135, pp. 685-695, 2019.

  2. Akash, A.R., Pattamatta, A., and Das, S.K., Experimental Study of the Thermohydraulic Performance of Water/Ethylene Glycol-Based Graphite Nanocoolant in Vehicle Radiators, J. Enhanced Heat Transf., vol. 26, pp. 345-363, 2019.

  3. Ali, H., Que, N.R.F., Hussain, A., Ali, M., and Farooq, H., Effect of Condensate Flow Rate and Vapor Velocity on Condensate Retention for Pin-Fin Tubes, J. Enhanced Heat Transf., vol. 26, pp. 619-630, 2019.

  4. Altun, A.H., Gurdal, M., and Berber, A., Effects of Sinusoidal Strip Element with Different Amplitudes on Heat Transfer and Flow Characteristics of Circular Channels, Heat Transf. Res., vol. 50, pp. 605-616, 2019.

  5. Arqub, O.A. and Shawagfeh, N., Application of Reproducing Kernel Algorithm for Solving Dirichlet Time-Fractional Diffusion-Gordon Types Equations in Porous Media, J. Porous Media, vol. 22, pp. 411-434, 2019.

  6. Baghban, A., Kahani, M., Nazari, M.A., Ahmadi, M.H., and Yan, W.M., Sensitivity Analysis and Application of Machine Learning Methods to Predict the Heat Transfer Performance of CNT/Water Nanofluid Flows through Coils, Int. J. Heat Mass Transf, vol. 128, pp. 825-835, 2019.

  7. Bahiraei, M., Heshmatian, S., and Moayedi H., Artificial Intelligence in the Field of Nanofluids: A Review on Applications and Potential Future Directions, Powder Technol., vol. 353, pp. 276-301, 2019a.

  8. Bahiraei, M., Mazaheri, N., and Rizehvandi, A., Application of a Hybrid Nanofluid Containing Graphene Nanoplatelet-Platinum Composite Powder in a Triple-Tube Heat Exchanger Equipped with Inserted Ribs, Appl. Therm. Eng., vol. 149, pp. 588-601, 2019b.

  9. Barnoon, P., Toghraie, D., Dehkordi, R.B., and Afrand, M., Two-Phase Natural Convection and Thermal Radiation of Non-Newtonian Nanofluid in a Porous Cavity Considering Inclined Cavity and Size of Inside Cylinders, Int. Commun. Heat Mass Transf., vol. 108, 104285, 2019.

  10. Bhatti, M.M., Sheikholeslami, M., Shahid, A., Hassan, M., and Abbas, T., Entropy Generation on the Interaction of Nanoparticles over a Stretched Surface with Thermal Radiation, Colloid Surface A, vol. 570, pp. 368-376, 2019.

  11. Bhavnani, S., Narayanan, V., Thiagarajan, N., and Strid, L., Passive Directional Motion of Fluid during Boiling Driven by Surface Asymmetry in a Dielectric Fluid, J. Enhanced Heat Transf., vol. 26, pp. 393-413, 2019.

  12. Blasiak, P. and Pietrowicz, S., A Numerical Study on Heat Transfer Enhancement via Mechanical Aids, Int. J. Heat Mass Transf, vol. 140, pp. 203-215, 2019.

  13. Cai, J., Li, Z., Ji, J., and Zhou, F., Performance Analysis of a Novel Air Source Hybrid Solar Assisted Heat Pump, Renew. Energy, vol. 139, pp. 1133-1145, 2019.

  14. Cai, Y. and Guo, Z., Spectral Investigation of Solar Energy Absorption and Light Transmittance in a Water-Filled Prismatic Glass Louver, Sol. Energy, vol. 179, pp. 164-173, 2019.

  15. Cakmak, N.K., Experimental Study of Thermal Conductivity of Boric Acid-Water Solutions, Heat Transf. Res., vol. 50, pp. 1675-1684, 2019.

  16. Chauhan, V.K.S. and Singh, D., Experimental Study of Mist Jet Impingement Cooling, J. Enhanced Heat Transf., vol. 26, pp. 451-470, 2019.

  17. Chen, G., Tang, Y., Wan, Z., Zhong, G., Tang, H., and Zeng, J., Heat Transfer Characteristic of an Ultra-Thin Flat Plate Heat Pipe with Surface-Functional Wicks for Cooling Electronics, Int. Commun. Heat Mass Transf., vol. 100, pp. 12-19, 2019.

  18. Cheng, Z., Bai, T., Shi, J., Feng, T., Wang, Y., Mecklenburg, M., Li, C., Hobart, K.D., Feygelson, T.I., Tadjer, M.J., Pate, B.B., Foley, B.M., Yates, L., Pantelides, S.T., Cola, B.A., Goorsky, M., and Graham, S., Tunable Thermal Energy Transport across Diamond Membranes and Diamond-Si Interfaces by Nanoscale Graphoepitaxy, ACS Appl. Mater. Inter., vol. 11, pp. 18517-18527, 2019a.

  19. Cheng, Z., Tanen, N., Chang, C., Shi, J., McCandless, J., Muller, D., Jena, D., Xing, H.G., and Graham, S., Significantly Reduced Thermal Conductivity in P-(Al0.iGa0.9)2O3/Ga2O3 Superlattices, Appl. Phys. Lett., vol. 115, 092105, 2019b.

  20. Cheng, Z.M., Yu, R.T., Wang, F.Q., Liang, H.X., Xie, M., Li, O., and Tan, J.Y., Coupled Heat Transfer Analyses of Molten Salt with Variation of Thermophysical Properties, Heat Transf. Res., vol. 50, pp. 33-56, 2019c.

  21. Collins, I.L., Weibel, J.A., Pan, L., and Garimella, S.V., A Permeable-Membrane Microchannel Heat Sink Made by Additive Manufacturing, Int. J. Heat Mass Transf., vol. 131, pp. 1174-1183, 2019.

  22. Contreras, E.M.C., Oliveira, G.A., and Filho, E.P.B., Experimental analysis of the thermohydraulic performance of graphene and silver nanofluids in automotive cooling systems, Int. J. Heat Mass Transf., vol. 132, pp. 375-387, 2019.

  23. Dagdevir, T., Keklikcioglu, O., and Ozceyhan, V., The Effect of Chamfer Length on Thermal and Hydraulic Performance in Al2O3-Water Nanofluid Flow through a Duct of Square Cross Section, Heat Transf. Res., vol. 50, pp. 1183-1204, 2019.

  24. Delfani, S., Esmaeili, M., and Karami, M., Application of Artificial Neural Network for Performance Prediction of a Nanofluid-Based Direct Absorption Solar Collector, Sustain. Energy Technol., vol. 36, 100559, 2019.

  25. Diaz, R. and Guo, Z.X., Enhanced Conduction and Pool Boiling Heat Transfer on Single-Layer Graphene-Coated Substrates, J. Enhanced Heat Transf., vol. 26, pp. 127-143, 2019.

  26. Dong, F., Cao, T.T., Hou, L.W.D., and Ni, J., Optimization Study of Artificial Cavities on Subcooled Flow Boiling Performance of Water in a Horizontal Simulated Engine Cooling Passage, J. Enhanced Heat Transf., vol. 26, pp. 37-57, 2019.

  27. Drissi, S., Ling, T.C., Mo, K.H., and Eddhahak, A., A Review of Microencapsulated and Composite Phase Change Materials: Alteration of Strength and Thermal Properties of Cement-Based Materials, Renew. Sustain. Energy Rev., vol. 110, pp. 467-484, 2019.

  28. Elfioglu, E.B., Didari, A., Ozyurt, T.O., and Menguf, M.P., Tunable Near-Field Radiative Transfer by III-V Group Compound Semiconductors, J. Phys. D: Appl. Phys, vol. 52, 105104, 2019.

  29. Elzouka, M. and Ndao, S., Enhanced Thermal Radiation via Interweaved L Slots, Opt. Express, vol. 27, no. 6, pp. 8651-8665, 2019.

  30. Emani, M.S., Nayak, A., Chowdhuri, A.K., Mandal, B.K., and Saha, S.K., Experimental Investigation on Heat Transfer Augmentation in Horizontal Tube Using Coiled Wire Inserts, J. Enhanced Heat Transf., vol. 26, pp. 513-534, 2019.

  31. Fan, H., Wu, H., Lindsay, L., and Hu, Y., Ab Initio Investigation of Single-Layer High Thermal Conductivity Boron Compounds, Phys. Rev. B, vol. 100, 085420, 2019.

  32. Fard, A.M., Mirjalily, S.A.A., and Ahrar, A.J., Influence of Carbon Nanotubes on Pressure Drop and Heat Transfer Rate of Water in Helically Coiled Tubes, J. Enhanced Heat Transf., vol. 26, pp. 217-233, 2019.

  33. Farzanehnia, A., Khatibi, M., Sardarabadi, M., and Passandideh-Fard, M., Experimental Investigation of Multiwall Carbon Nanotube/Paraffin Based Heat Sink for Electronic Device Thermal Management, Energy Convers. Manage., vol. 179, pp. 314-325, 2019.

  34. Feng, T., Zhong, Y., Shi, J., and Ruan, X., Unexpected High Inelastic Phonon Transport across Solid-Solid Interface: Modal Nonequilibrium Molecular Dynamics Simulations and Landauer Analysis, Phys. Rev. B, vol. 99, 045301, 2019.

  35. Fernandez, A.G., Munoz-Sanchez, B., Nieto-Maestre, J., and Garcia-Romero, A., High Temperature Corrosion Behavior on Molten Nitrate Salt-Based Nanofluids for CSP Plants, Renew. Energy, vol. 130, pp. 902-909, 2019.

  36. Fleming, E., Du, F., Ou, E., Dai, L.M., and Shi, L., Thermal Conductivity of Carbon Nanotubes Grown by Catalyst-Free Chemical Vapor Deposition in Nanopores, Carbon, vol. 145, pp. 195-200, 2019.

  37. Gaur, R., Sabbani, G., and Prasad, B.V.S.S.S., A Computational Study of Flow and Heat Transfer in a Channel with an Array of Novel Surface Roughness Elements, J. Enhanced Heat Transf., vol. 26, pp. 145-166, 2019.

  38. Ghalambaz, M., Chamkha, A.J., and Wen, D., Natural Convective Flow and Heat Transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a Cavity, Int. J. Heat Mass Transf., vol. 138, pp. 738-749, 2019.

  39. Ghodke, S., Yamamoto, A., Hu, H.C., Nishino, S., Matsunaga, T., Byeon, D., Ikuta, H., and Takeuchi, T., Improved Thermoelectric Properties of Re-substituted Higher Manganese Silicides by Inducing Phonon Scattering and an Energy-Filtering Effect at Grain Boundary Interfaces, ACS Appl. Mater. Inter., vol. 11, pp. 31169-31175, 2019.

  40. Godbole, R. and Ramakrishna, P.A., Enhancement of Cooling Capacity of a Vortex Tube, J. Enhanced Heat Transf., vol. 26, pp. 317-331, 2019.

  41. Guan, N., Jiang, G.L., Liu, Z.G., and Zhang, C.W., Flow and Heat Transfer in Hydrophobic Micro Pin Fins with Different Contact Angles, Heat Transf. Res., vol. 50, pp. 799-820, 2019.

  42. Gunes, S. and Karakaya, E., Experimental Investigation on Heat Transfer Enhancement with Loose-Fit Perforated Twisted Tapes, Heat Transf. Res., vol. 50, pp. 821-837, 2019.

  43. Guo, Y.Q., Yang, X.T., Ruan, K.P., Kong, J., Dong, M.Y., Zhang, J.X., Gu, J.W., and Guo, Z.H., Reduced Graphene Oxide Heterostructured Silver Nanoparticles Significantly Enhanced Thermal Conductivities in Hot-Pressed Electrospun Polyimide Nanocomposites, ACS Appl. Energy Mater., vol. 11, pp. 25465-25473, 2019.

  44. Guo, Z., A Letter from the New Editor-in-Chief to the Editorial Board, J. Enhanced Heat Transf., vol. 26, no. 1, pp. v-vii, 2019a.

  45. Guo, Z., Heat Transfer Enhancement-A Brief Review of 2018 Literature, J. Enhanced Heat Transf., vol. 26, pp. 429-449, 2019b.

  46. Han, H.Z. and Yu, R.T., Effect of Corrugation Height on Flow and Heat Transfer Mechanism in a Corrugation Channel, Heat Transf. Res, vol. 50, pp. 1231-1249, 2019.

  47. Hao T.T., Ma, H.B., and Ma, X.H., Heat Transfer Performance of Polytetrafluoroethylene Oscillating Heat Pipe with Water, Ethanol, and Acetone as Working Fluids, Int. J. Heat Mass Transf., vol. 131, pp. 109-120, 2019.

  48. Hao, Y. and Guo, Z., Monitor In-Situ Superconducting Temperature via Optical Whispering-Gallery Mode Sensors, J. Phys. D: Appl. Phys., vol. 52, 175101, 2019.

  49. He, M.J., Qi, H., Li, Y., Ren, Y.T., Cai, W.H., and Ruan, L.M., Graphene-Mediated Near Field Thermostat Based on Three-Body Photon Tunneling, Int. J. Heat Mass Transf., vol. 137, pp. 12-19, 2019a.

  50. He, Y.-L., Liu, Q., Li, Q., and Tao, W.-Q., Lattice Boltzmann Methods for Single-Phase and Solid-Liquid Phase-Change Heat Transfer in Porous Media: A Review, Int. J. Heat Mass Transf., vol. 129, pp. 160-197, 2019b.

  51. Jeong, D.G., Ju, H.I., Choi, Y.G., Roh, C.J., Woo, S., Choi, W.S., and Lee, J.S., Nanoscale Heat Transport through the Hetero-Interface of SrRuO3 Thin Films, Nanotechnology, vol. 30, 374001, 2019.

  52. Jiang, C., Tang, R., Wang, X., Ju, H., Chen, G., and Chen, T., Alkali Metals Doping for High-Performance Planar Heterojunction Sb2S3 Solar Cells, Solar RRL, vol. 3, 1800272, 2019.

  53. Jouybari, H.J., Nimvari, M.E., and Saedodin, S., Thermal Performance Evaluation of a Nanofluid-Based Flat-Plate Solar Collector, J. Therm. Anal. Calorim., vol. 137, pp. 1757-1774, 2019.

  54. Kashyap, V., Sakunkaewkasem, S., Jafari, P., Nazari, M., Eslami, B., Nazifi, S., Irajizad, P., Marquez, M.D., Lee, T.R., and Ghasemi, H., Full Spectrum Solar Thermal Energy Harvesting and Storage by a Molecular and Phase-Change Hybrid Material, Joule, vol. 3, pp. 3100-3111, 2019.

  55. Katrodiya, D., Jani, C., Sorathiya, V., and Patel, S.K., Metasurface Based Broad Band Solar Absorber, Opt. Mater., vol. 89, pp. 34-41, 2019.

  56. Kaya, H., Ekiciler, R., and Arslan, K., Entropy Generation Analysis of Forced Convection Flow in a Semicircular Microchannel with TiO2/Water Nanofluid, Heat Transf. Res., vol. 50, pp. 335-348, 2019.

  57. Khanlari, A., Sozen, A., Variyenli, H.I., and Guru, M., Comparison between Heat Transfer Characteristics of TiO2/Deionized Water and Kaolin/Deionized Water Nanofluids in the Plate Heat Exchanger, Heat Transf. Res., vol. 50, pp. 435-450, 2019.

  58. Khosravi, A., Malekan, M., and Assad, M.E.H., Numerical Analysis of Magnetic Field Effects on the Heat Transfer Enhancement in Ferrofluids for a Parabolic Trough Solar Collector, Renew. Energy, vol. 134, pp. 54-63, 2019.

  59. Kim, C., Lee, M., Park, J., and Seol, J.H., Measurement and Analysis of Ballistic-Diffusive Phonon Heat Transport in a Constrained Silicon Film, Appl. Therm. Eng., vol. 160, 114080, 2019.

  60. Kim, N.H., Steam Condensation Enhancement and Fouling in Titanium Corrugated Tubes, J. Enhanced Heat Transf., vol. 26, pp. 59-74, 2019.

  61. Kumar, B., Seth, G.S., Nandkeolyar, R., and Chamkha, A.J., Outlining the Impact of Induced Magnetic Field and Thermal Radiation on Magneto-Convection Flow of Dissipative Fluid, Int. J. Therm. Sci., vol. 146, pp. 106101, 2019a.

  62. Kumar, R., Kumar, A., and Goel, V., Performance Improvement and Development of Correlation for Friction Factor and Heat Transfer Using Computational Fluid Dynamics for Ribbed Triangular Duct Solar Air Heater, Renew. Energy, vol. 131, pp. 788-799, 2019b.

  63. Kumar, S., Kothiyal, A.D., Bisht, M.S., and Kumar, A., Effect of Nanofluid Flow and Protrusion Ribs on Performance in Square Channels: An Experimental Investigation, J. Enhanced Heat Transf., vol. 26, pp. 75-100, 2019c.

  64. Li, C., Guo, H.J., Ye, W.B., Hong, Y., and Huang, S.M., Thermohydraulic Characteristics of Microchannel Heat Sinks Combined with Ribs and Cavities: Effects of Geometric Parameters and Heat Flux, Heat Transf. Res., vol. 50, pp. 89-105, 2019a.

  65. Li, H., Shi, S., Lin, B., Lu, J., Lu, Y., Ye, Q., Wang, Z., Hong, Y., and Zhu, X., A Fully Coupled Electromagnetic, Heat Transfer and Multiphase Porous Media Model for Microwave Heating of Coal, Fuel Process. Technol., vol. 189, pp. 49-61, 2019b.

  66. Li, M., Kang, J.S., Nguyen, H.D., Wu, H., Aoki, T., and Hu, Y., Anisotropic Thermal Boundary Resistance across 2D Black Phosphorus: Experiment and Atomistic Modeling of Interfacial Energy Transport, Adv. Mater., vol. 31, pp. 1901021, 2019c.

  67. Li, Y., Lin, C., Zhou, D., An, Y., Li, D., Chi, C., Huang, H., Yang, S., Tso, C.Y., Chao, C.Y., and Huang, B., Scalable All-Ceramic Nanofilms as Highly Efficient and Thermally Stable Selective Solar Absorbers, Nano Energy, vol. 64, 103947, 2019d.

  68. Li, Z.X., Sheikholeslami, M., and Bhatti, M.M., Effect of Lorentz Forces on Nanofluid Flow inside a Porous Enclosure with a Moving Wall Using Various Shapes of CuO Nanoparticles, Heat Transf. Res., vol. 50, pp. 697-715, 2019e.

  69. Liang, C., Zhang, Y., Yi, Z., Chen, X., Zhou, Z., Yang, H., Yi, Y., Tang, Y., Yao, W., and Yi, Y., A Broadband and Polarization-Independent Metamaterial Perfect Absorber with Monolayer Cr and Ti Elliptical Disks Array, Results Phys., vol. 15, 102635, 2019.

  70. Ligrani, P., McInturff, P., Suzuki, M., and Nakamata, C., Winglet-Pair Target Surface Roughness Influences on Impingement Jet Array Heat Transfer, J. Enhanced Heat Transf., vol. 26, pp. 15-35, 2019.

  71. Lily, Mohapatra, S.S., and Munshi, B., Intermittent Low Mass Flux Spray Cooling at High Temperature: A Novel Methodology for the Augmentation of Heat Flux in Transition Boiling Regime, J. Enhanced Heat Transf., vol. 26, pp. 471-486, 2019.

  72. Lin, H., Sturmberg, B.C.P., Lin, K., Yang, Y.Y., Zheng, X.R., Chong, T.K., Sterke, C.M.D., and Jia, B.H., A 90-nm-Thick Graphene Metamaterial for Strong and Extremely Broadband Absorption of Unpolarized Light, Nat. Photonics, vol. 13, pp. 270-276, 2019.

  73. Lindsay, L., Katre, A., Cepellotti, A., and Mingo, N., Perspective on Ab Initio Phonon Thermal Transport, J. Appl. Phys., vol. 126, 050902, 2019.

  74. Liu Z.F., Chen, Z.H., and Yu, F., Enhanced Thermal Conductivity of Microencapsulated Phase Change Materials Based on Graphene Oxide and Carbon Nanotube Hybrid Filler, Sol. Energy Mat. Sol. C., vol. 192, pp. 72-80, 2019a.

  75. Liu, F., Zou, R., Hu, N., Ning, H.M., Yan, C., Liu, Y., Wu, L.K., Mo, F.H., and Fu, S.Y., Enhancement of Thermal Energy Transport across the Graphene/h-BN Heterostructure Interface, Nanoscale, vol. 11, pp. 4067-4072, 2019b.

  76. Liu, H.T., Zhai, R.R., Fu, J.X., Wang, Y.L., and Yang Y.P., Optimization Study of Thermal-Storage PV-CSP Integrated System Based on GA-PSO Algorithm, Sol. Energy, vol. 184, pp. 391-409, 2019c.

  77. Liu, Z., Tang, P., Liu, X., Yi, Z., Liu, G., Wang, Y., and Liu, M., Truncated Titanium/Semiconductor Cones for Wide-Band Solar Absorbers, Nanotechnology, vol. 30, 305203, 2019d.

  78. Lurie, S.A., Rabinskiy, L.N., and Solyaev, Y.O., Topology Optimization of the Wick Geometry in a Flat Plate Heat Pipe, Int. J. Heat Mass Transf., vol. 128, pp. 239-247, 2019.

  79. Malhotra, A., Kothari, K., and Maldovan, M., Cross-Plane Thermal Conduction in Superlattices: Impact of Multiple Length Scales on Phonon Transport, J. Appl. Phys, vol. 125, 044304, 2019.

  80. Mashali F., Languri, E.M., Davidson, J., Kerns, D., Johnson, W., Nawaz, K., and Cunningham, G., Thermo-Physical Properties of Diamond Nanofluids: A Review, Int. J. Heat Mass Transf., vol. 129, pp. 1123-1135, 2019.

  81. Menni, Y., Azzi, A., and Chamkha, A.J., Computational Thermal Analysis of Turbulent Forced-Convection Flow in an Air Channel with a Flat Rectangular Fin and Downstream V-Shaped Baffle, Heat Transf. Res., vol. 50, pp. 1781-1818, 2019.

  82. Mondal, A. and Kim, N.H., Nucleate Pool Boiling of R-134a on Enhanced Horizontal Surfaces Having Pores on Sub-Tunnels, J. Enhanced Heat Transf., vol. 26, pp. 195-216, 2019.

  83. Mousavi, S.B. and Heyhat, M.M., Numerical Study of Heat Transfer Enhancement from a Heated Circular Cylinder by Using Nanofluid and Transverse Oscillation, J. Therm. Anal. Calorim., vol. 135, pp. 935-945, 2019.

  84. Naderi, C., Rasouli, E., Narayanan, V., and Horend, C., Design and Performance of a Microchannel Supercritical Carbon Dioxide Recuperator with Integrated Header Architecture, J. Enhanced Heat Transf., vol. 26, pp. 365-392, 2019.

  85. Nalawade, M.K., Bhati, A., and Vedula, R.P., Heat Transfer and Pressure Drop Characteristics for Flow through Square Channel with Delta Wing Vortex Generator Elements on Two Opposite Walls, J. Enhanced Heat Transf., vol. 26, pp. 101-126, 2019.

  86. Nasirzadehroshenin, F., Maddah, H., Sakhaeinia, H., and Pourmozafari A., Investigation of Exergy of Double-Pipe Heat Exchanger Using Synthesized Hybrid Nanofluid Developed by Modeling, Int. J. Thermophys., vol. 40, article 87, 2019.

  87. Navarrete, N., Mondragon, R., Wen, D.S., Navarro, M.E., Ding, Y.L., and Julia, J.E., Thermal Energy Storage of Molten Salt-Based Nanofluid Containing Nano-Encapsulated Metal Alloy Phase Change Materials, Energy, vol. 167, pp. 9912-9920, 2019.

  88. Nayak, S.K. and Mishra, P.C., Enhanced Heat Transfer from Hot Surface by Nanofluid Based Ultrafast Cooling: An Experimental Investigation, J. Enhanced Heat Transf., vol. 26, pp. 415-428, 2019.

  89. Nazari, S., Safarzadeh, H., and Bahiraei, M., Performance Improvement of a Single Slope Solar Still by Employing Thermoelectric Cooling Channel and Copper Oxide Nanofluid: An Experimental Study, J. Cleaner Product., vol. 208, pp. 1041-1052, 2019.

  90. Nazir, H., Batool, M., Osorio, F.J.B., Isaza-Ruiz, M., Xu, X., Vignarooban, K., Phelan, P., and Kannan, A.M., Recent Developments in Phase Change Materials for Energy Storage Applications: A Review, Int. J. Heat Mass Transf., vol. 129, pp. 491-523, 2019.

  91. Nirgude, V.V. and Sahu, S.K., Nucleate Boiling Heat Transfer Performance of Laser Textured Copper Surfaces, J. Enhanced Heat Transf, vol. 26, pp. 597-618, 2019.

  92. Niu, Q., Fu, D., Dong, S., and Tan, H., A Simplified Model for Fast Estimating Infrared Thermal Radiation of Low-Altitude Under-Expanded Exhaust Plumes, Int. J. Heat Mass Transf., vol. 136, pp. 276-287, 2019.

  93. Ohnishi M. and Shiomi, J., Towards Ultimate Impedance of Phonon Transport by Nanostructure Interface, APL Mater., vol. 7, 013102, 2019.

  94. Papadakis, G.T., Zhao, B., Buddhiraju, S., and Fan, S., Gate-Tunable Near-Field Heat Transfer, ACS Photonics, vol. 6, pp. 709-719, 2019.

  95. Patel, S.K., Charola, S., Jani, C., Ladumor, M., Parmar, J., and Guo, T., Graphene-Based Highly Efficient and Broadband Solar Absorber, Opt. Mater, vol. 96, 109330, 2019.

  96. Patel, V.M. and Mehta, H.B., Experimental Investigations on the Effect of Influencing Parameters on Operating Regime of a Closed Loop Pulsating Heat Pipe, J. Enhanced Heat Transf., vol. 26, pp. 333-344, 2019.

  97. Patil, A.S., Kore, S.S., Agham, R.D., and Sane, N.K., Thermohydraulic Performance of Tube Exchanger Enhanced with Detached Circular Rings from Wall, J. Enhanced Heat Transf., vol. 26, pp. 535-549, 2019.

  98. Peng, J., Curcija, D.C., Thanachareonkit, A., Lee, E.S., Goudey, H., and Selkowitz, S.E., Study on the Overall Energy Performance of a Novel c-Si Based Semitransparent Solar Photovoltaic Window, Appl. Energy, vol. 242, pp. 854-872, 2019.

  99. Pires, I.A., Silva, R.A, Rocha, A.V., Porto, M.P., Maia, T.A.C., and Fiho, B.D.J.C., Oil Immersed Power Electronics and Reliability Enhancement, IEEE Trans. Ind. Appl., vol. 55, pp. 4407-4416, 2019.

  100. Polanco, C.A. and Lindsay, L., Phonon Thermal Conductance across GaN-AlN Interfaces from First Principles, Phys. Rev. B, vol. 99, 075202, 2019.

  101. Prakash, J., Siva, E.P., Tripathi, D., Kuharat, S., and Beg, O.A., Peristaltic Pumping of Magnetic Nanofluids with Thermal Radiation and Temperature-Dependent Viscosity Effects: Modeling a Solar Magneto-Biomimetic Nanopump, Renew. Energy, vol. 133, pp. 1308-1326, 2019.

  102. Qiu, L., Ouyang, Y., Feng, Y., and Zhang, X., Review on Micro/Nano Phase Change Materials for Solar Thermal Applications, Renew. Energy, vol. 140, pp. 513-538, 2019a.

  103. Qiu, L., Zou, H.Y., Wang, X.T., Feng, Y.H., Zhang, X.X., Zhao, J.N., Zhang, X.H., and Li, Q.W., Enhancing the Interfacial Interaction of Carbon Nanotubes Fibers by Au Nanoparticles with Improved Performance of the Electrical and Thermal Conductivity, Carbon, vol. 141, pp. 497-505, 2019b.

  104. Rajabpour, A., Bazrafshan, S., and Volz, S., Carbon-Nitride 2D Nanostructures: Thermal Conductivity and Interfacial Thermal Conductance with Silica Substrate, Phys. Chem. Chem. Phys., vol. 21, pp. 2507-2512, 2019.

  105. Ramesh, K. and Prakash, J., Thermal Analysis for Heat Transfer Enhancement in Electroosmosis-Modulated Peristaltic Transport of Sutterby Nanofluids in a Microfluidic Vessel, J. Therm. Anal. Calorim., vol. 138, pp. 1311-1326, 2019.

  106. Ramezanizadeh, M., Ahmadi, M.H., Nazari, M.A., Sadeghzadeh, M., and Chen, L.G., A Review on the Utilized Machine Learning Approaches for Modeling the Dynamic Viscosity of Nanofluids, Renew. Sustain. Energy Rev., vol. 114, 109345, 2019a.

  107. Ramezanizadeh, M., Nazari, M.A., Ahmadi, M.H., and Chau, K.W., Experimental and Numerical Analysis of a Nanofluidic Thermosyphon Heat Exchanger, Eng. Appl. Comput. Fluid, vol. 13, pp. 40-47, 2019b.

  108. Rastgarkafshgarkolaei, R., Zhang, J., Polanco, C.A., Le, N.Q., Ghosh, A.W., and Norris, P.M., Maximization of Thermal Conductance at Interfaces via Exponentially Mass-Graded Interlayers, Nanoscale, vol. 11, 6254, 2019.

  109. Rauf, A., Abbas, Z., and Shehzad, S.A., Chemically Reactive Hydromagnetic Flow over a Stretchable Oscillatory Rotating Disk with Thermal Radiation and Heat Source/Sink: A Numerical Study, Heat Transf. Res., vol. 50, pp. 1495-1512, 2019.

  110. Rauf, S. and Saha, S.K., Thermal Performance of Multitube Latent Heat Storage Using a Metal Matrix for Solar Applications: Numerical Study, Heat Transf. Res., vol. 50, pp. 545-564, 2019.

  111. Rezaei, B., Irannejad, N., Ensafi, A.A., and Kazemifard, N., The Impressive Effect of Eco-Friendly Carbon Dots on Improving the Performance of Dye-Sensitized Solar Cells, Sol. Energy, vol. 182, pp. 412-419, 2019.

  112. Ruiz, G., Ripoll, N., Fedorova, N., Zbogar-Rasic, A., Jovicic, V., Delgado, A., and Toledo, M., Experimental and Numerical Analysis of the Heat Transfer in a Packed Bed Exposed to the High Thermal Radiation Flux, Int. J. Heat Mass Transf., vol. 136, pp. 383-392, 2019.

  113. Sadrameli, S.M., Motaharinejad, F., Mohammadpour, M., and Dorkoosh, F., An Experimental Investigation to the Thermal Conductivity Enhancement of Paraffin Wax as a Phase Change Material Using Diamond Nanoparticles as a Promoting Factor, HeatMass Transf., vol. 55, pp. 1801-1808, 2019.

  114. Salihoglu, H. and Xu, X., Near-Field Radiative Heat Transfer Enhancement Using Natural Hyperbolic Material, J. Quant. Spectrosc. Rad. Transf., vol. 222, pp. 115-121, 2019.

  115. Sarafraz, M.M., Tlili, I., Abdul Baseer, M., and Safaei, M.R., Potential of Solar Collectors for Clean Thermal Energy Production in Smart Cities Using Nanofluids: Experimental Assessment and Efficiency Improvement, Appl. Sci., vol. 9, 1877, 2019.

  116. Sarafraz, M.M., Yang, B., Pourmehran, O., Arjomandi, M., and Ghomashchi, R., Fluid and Heat Transfer Characteristics of Aqueous Graphene Nanoplatelet (GNP) Nanofluid in a Microchannel, Int. Commun. Heat Mass Transf., vol. 107, pp. 24-33, 2019.

  117. Sarbu, I. and Dorca, A., Review on Heat Transfer Analysis in Thermal Energy Storage Using Latent Heat Storage Systems and Phase Change Materials, Int. J. Energy Res., vol. 43, pp. 29-64, 2019.

  118. Sardarabadi, H., Heris, S.Z., Ahmadpour, A., and Passandideh-Fard, M., Experimental Investigation of a Novel Type of Two-Phase Closed Thermosyphon Filled with Functionalized Carbon Nanotubes/Water Nanofluids for Electronic Cooling Application, Energy Convers. Manage., vol. 188, pp. 321-332, 2019.

  119. Sarhan, A.R., Karim, M.R., Kadhim, Z.K., and Naser, J., Experimental Investigation on the Effect of Vertical Vibration on Thermal Performances of Rectangular Flat Plate, Exp. Therm. Fluid Sci., vol. 101, pp. 231-240, 2019.

  120. Shah, T.R. and Ali, H.M., Applications of Hybrid Nanofluids in Solar Energy, Practical Limitations and Challenges: A Critical Review, Sol. Energy, vol. 183, pp. 173-203, 2019.

  121. Shahriari, A., Javaran, E.J., and Rahnama, M., Simulation of Natural Convection of an Al2O3/Water Nanofluid in a Complex Wavy-Wall Cavity Using the Lattice Boltzmann Method, Heat Transf. Res., vol. 50, pp. 1513-1530, 2019.

  122. Sharafeldin, M.A., Grof, G., Abu-Nada, E., and Mahian, O., Evacuated Tube Solar Collector Performance Using Copper Nanofluid: Energy and Environmental Analysis, Appl. Therm. Eng., vol. 162, 114205, 2019.

  123. Sharma, N., Tariq, A., and Mishra, M., Aerothermal Characteristics of a Rectangular Duct with Periodic Trapezium Ribs, J. Enhanced Heat Transf., vol. 26, pp. 295-315, 2019.

  124. Shaukat, R., Kamran, M.S., Imran, S., Anwar, Z., and Ali, H., Numerical Investigation of Melting Heat Transfer during Micro- Encapsulated Phase Change Slurry Flow in Microchannels, J. Enhanced Heat Transf., vol. 26, pp. 551-575, 2019.

  125. Sheikholeslami, M., New Computational Approach for Exergy and Entropy Analysis of Nanofluid under the Impact of Lorentz Force through a Porous Media, Comput. Methods Appl. Mech. Eng., vol. 344, pp. 319-333, 2019.

  126. Shi, G.-Q., Ding, P.X., Guo, Z., and Wang, Y.-M., Modeling Temperature Distributions upon Liquid-Nitrogen Injection into a Self Heating Coal Mine Goaf, Process Saf. Environ., vol., 126, pp. 278-286, 2019a.

  127. Shi, K., Sun, Y., Chen, Z., He, N., Bao, F., Evans, J., and He, S., Colossal Enhancement of Near-Field Thermal Radiation across Hundreds of Nanometers between Millimeter-Scale Plates through Surface Plasmon and Phonon Polaritons Coupling, Nano Lett., vol. 19, pp. 8082-8088, 2019b.

  128. Shi, K.Z., Bao, F.L., He, N., and He, S.L., Near-Field Heat Transfer between Graphene-Si Grating Heterostructures with Multiple Magnetic-Polaritons Coupling, Int. J. Heat Mass Transf., vol. 134, pp. 1119-1126, 2019c.

  129. Shinde, S.M., Patil, P.A., and Bhojwani, V.K., Damage of Nanoparticles and Pipe Surface Due to the Interaction of a Nanofluid with System Components-An Experimental Study, Heat Transf. Res., vol. 50, pp. 1653-1662, 2019.

  130. Song, S., Zhao, T., Qiu, F., Zhu, W., Chen, T., Guo, Y., Zhang, Y., Wang, Y., Feng, R., Liu, Y., and Xiong, C., Natural Microtubule Encapsulated Phase Change Material with High Thermal Energy Storage Capacity, Energy, vol. 172, pp. 1144-1150, 2019.

  131. Sozen, A., Khanlari, A., and Qiftfi, E., Experimental and Numerical Investigation of Nanofluid Usage in a Plate Heat Exchanger for Performance Improvement, Int. J. Renew. Energy Dev., vol. 8, pp. 27-32, 2019.

  132. Tao, P., Chang, C., Tong, Z., Bao, H., Song, C., Wu, J., Shang, W., and Deng, T., Magnetically-Accelerated Large-Capacity Solar-Thermal Energy Storage within High-Temperature Phase-Change Materials, Energy Environ. Sci., vol. 12, pp. 1613-1621, 2019.

  133. Tiwari, N. and Moharana, M.K., Numerical Study of Thermal Enhancement in Modified Raccoon Microchannels, Heat Transf. Res, vol. 50, pp. 519-543, 2019.

  134. Tiwari, R., Andhare, R.S., Shooshtari, A., and Ohadi, M., Development of an Additive Manufacturing-Enabled Compact Manifold Microchannel Heat Exchanger, Appl. Therm. Eng., vol. 147, pp. 781-788, 2019.

  135. van Roekeghem, A., Vermeersch, B., Carrete, J., and Mingo, N., Thermal Resistance of GaN/AlN Graded Interfaces, Phys. Rev. Appl., vol. 11, 034036, 2019.

  136. Variyenli, H.I., Experimental and Numerical Investigation of Heat Transfer Enhancement in a Plate Heat Exchanger Using a Fly Ash Nanofluid, Heat Transf. Res, vol. 50, pp. 1477-1494, 2019.

  137. Varnavides, G., Jermyn, A.S., Anikeeva, P., and Narang, P., Nonequilibrium Phonon Transport across Nanoscale Interfaces, Phys. Rev. B, vol. 100, 115402, 2019.

  138. Vjatkin, A.A., Kozlov, V.G., and Sabirov, R.R., Convection of a Heat-Generating Fluid in a Rotating Cylindrical Cavity Subject to Transverse Vibrations, Int. J. Therm. Sci., vol. 137, pp. 560-570, 2019.

  139. Wang, J.F., Xie, H.Q., Guo, Z., Cai, L., and Zhang, K., Using Organic Phase-Change Materials for Enhanced Energy Storage in Water Heaters: An Experimental Study, J. Enhanced Heat Transf., vol. 26, pp. 167-178, 2019.

  140. Wei, T.W., Oprins, H., Cherman, V., Yang, S.F., Wolf, I.D., Beyne, E., and Baelmans, M., Experimental Characterization of a Chip-Level 3-D Printed Microjet Liquid Impingement Cooler for High-Performance Systems, IEEE Transact. Compon. Packag. Manuf Technol., vol. 9, pp. 1815-1824, 2019.

  141. Wen, M.Y. and Ho, C.Y., Study of Heat Transfer Characteristics of Perforated Circular Pin-Fin Heat Sinks Cooled by an Inclined Impinging Jet, J. Enhanced Heat Transf., vol. 26, pp. 577-595, 2019.

  142. Wiriyasart, S., Hommalee, C., and Naphon, P., Thermal Cooling Enhancement of Dual Processors Computer with Thermoelectric Air Cooler Module, Case Stud. Therm. Eng., vol. 14, 100445, 2019.

  143. Wolk, K.J. and Dhir, V.K., Air-Side Heat Transfer and Pressure Drop for Elliptical Tubes with Modified Fins in a Confined Channel, J. Enhanced Heat Transf., vol. 26, pp. 487-511, 2019.

  144. Wu, Y.P., Luo, J.B., Wang, Y., Wang, G.L., Wang, H., Yang, Z.Q., and Ding, G.F., Critical Effect and Enhanced Thermal Conductivity of Cu-Diamond Composites Reinforced with Various Diamond Prepared by Composite Electroplating, Ceram. Int., vol. 45, pp. 13225-13234, 2019a.

  145. Wu, Z.H., Xu, C., Ma, C.Q., Liu, Z.B., Cheng, H., and Ren, W.C., Synergistic Effect of Aligned Graphene Nanosheets in Graphene Foam for High-Performance Thermally Conductive Composites, Adv. Mater., vol. 31, 1900199, 2019b.

  146. Wu, Z.T., Shi, Y.T., Song, K.Q., He, S.Y., and Gao, M., Numerical Simulation of Heat Transfer Performance Enhancement of Cooling Water Jacket Used in the Carbon Industry, J. Enhanced Heat Transf., vol. 26, pp. 235-255, 2019c.

  147. Xin, G.Q., Zhu, W.G., Deng, Y.X., Cheng, J., Zhang, L.T., Chung, A.J., De, S., and Lian, J., Microfluidics-Enabled Orientation and Microstructure Control of Macroscopic Graphene Fibers, Nat. Nanotechnol., vol. 14, pp. 168-175, 2019.

  148. Xu, K., Gabourie, A.J., Hashemi, A., Fan, Z.Y., Wei, N., Farimani, A.B., Komsa, H.P., Krasheninniknov, A.V., Pop, E., and Ala-Nissila, T., Thermal Transport in MoS2 from Molecular Dynamics Using Different Empirical Potentials, Phys. Rev. B, vol. 99, 054303, 2019a.

  149. Xu, Q., Zhou, J.W., Liu, T.-H., and Chen, G., Effect of Electron-Phonon Interaction on Lattice Thermal Conductivity of SiGe Alloys, Appl. Phys. Lett., vol. 115, 023903, 2019b.

  150. Yang, H., Wang, Q., Huang, Y., Feng, J., Ao, X., Hu, M., and Pei, G., Spectral Optimization of Solar Selective Absorbing Coating for Parabolic Trough Receiver, Energy, vol. 183, pp. 639-650, 2019a.

  151. Yang, X., Guo, Z., Liu, Y., Jin, L., and He, Y.L., Effect of Inclination on the Thermal Response of Composite Phase Change Materials for Thermal Energy Storage, Appl. Energy, vol. 238, pp. 22-33, 2019b.

  152. Yang, X., He, Z., Niu, Q., Dong, S., and Tan, H., Numerical Analysis of Turbulence Radiation Interaction Effect on Radiative Heat Transfer in a Swirling Oxyfuel Furnace, Int. J. Heat Mass Transf., vol. 141, pp. 1227-1237, 2019c.

  153. Yilmazoglu, M.Z., Gokalp, O., and Biyikoglu, A., Heat Removal Improvement in an Enclosure with Electronic Components for Air Conditioning Devices, J. Enhanced Heat Transf., vol. 26, pp. 1-14, 2019.

  154. Yousif, J.H., Kazem, H.A., Alattar, N.N., and Elhassan I.I., A Comparison Study Based on Artificial Neural Network for Assessing PV/T Solar Energy Production, Case Stud. Therm. Eng., vol. 13, 100407, 2019.

  155. Zarringhalam, M., Ahmadi-Danesh-Ashtiani, H., Toghraie, D., and Fazaeli, R., Molecular Dynamics Simulation to Study the Effects of Roughness Elements with Cone Geometry on the Boiling Flow inside a Microchannel, Int. J. Heat Mass Transf., vol. 141, pp. 1-8, 2019.

  156. Zhang, L., Zhou, K.C., Wei, Q.P., Ma, L., Ye, W.T., Li, H.C., Zhou, B., Yu, Z.M., Lin, C., Luo, J.T., and Gan, X.P., Thermal Conductivity Enhancement of Phase Change Materials with 3D Porous Diamond Foam for Thermal Energy Storage, Appl. Energy, vols. 233-234, pp. 208-219, 2019a.

  157. Zhang, S., Chen, J., Sun, Y., Li, J., Zeng, J., Yuan, W., and Tang, Y., Experimental Study on the Thermal Performance of a Novel Ultra-Thin Aluminum Flat Heat Pipe, Renew. Energy, vol. 135, pp. 1133-1143, 2019b.

  158. Zhang, X.D., Gao, J.Y., Zhang, P. J., and Liu, J., Comparison on Enhanced Phase Change Heat Transfer of Low Melting Point Metal Melting Using Different Heating Methods, J. Enhanced Heat Transf, vol. 26, pp. 179-194, 2019c.

  159. Zhang, Y.S. and Chen, W., Boiling Heat Transfer Performance of a Brass Beads-Packed Porous Layer Subjected to Submerged Jet Impingement, Heat Transf. Res., vol. 50, pp. 1457-1476, 2019.

  160. Zhao, J., Ma, X.Q., Li, M.J., and Shi, Q., Numerical and Experimental Studies on an Innovative Wasp Waist Tube and Louvered-Fin-Type Assembled Compact Radiator, J. Enhanced Heat Transf., vol. 26, pp. 257-275, 2019a.

  161. Zhao, Y., Yang, L., Liu, C.H., Zhang, Q., Chen, Y.F., Yang, J.K., and Li, D.Y., Kink Effects on Thermal Transport in Silicon Nanowires, Int. J. Heat Mass Transf., vol. 137, pp. 573-578, 2019b.

  162. Zhou, G., Li, J., and Jia, Z., Power-Saving Exploration for High-End Ultra-Slim Laptop Computers with Miniature Loop Heat Pipe Cooling Module, Appl. Energy, vol. 239, pp. 859-875, 2019a.

  163. Zhou, W. J., Li, Y., Chen, Z.S., Deng, L.Q., and Gan, Y.H., A Novel Ultra-Thin Flattened Heat Pipe with Biporous Spiral Woven Mesh Wick for Cooling Electronic Devices, Energy Convers. Manage., vol. 180, pp. 769-783, 2019b.

  164. Zhu, L., Fiorino, A., Thompson, D., Mittapally, R., Meyhofer, E., and Reddy, P., Near-Field Photonic Cooling through Control of the Chemical Potential of Photons, Nature, vol. 566, no. 7743, pp. 239-244, 2019.

  165. Zobeiri, H., Wang, R., Wang, T., Lin, H., Deng, C., and Wang, X.W., Frequency-Domain Energy Transport State-Resolved Raman for Measuring the Thermal Conductivity of Suspended nm-Thick MoSe2, Int. J. Heat Mass Transf., vol. 133, pp. 1074-1085, 2019.

CITED BY
  1. Cheng Lixin, Chai Lei, Guo Zhixiong, THERMAL ENERGY, PROCESS, AND TRANSPORT INTENSIFICATION - A BRIEF REVIEW OF LITERATURE IN 2021 AND PROSPECTS , Heat Transfer Research, 53, 18, 2022. Crossref

  2. Ata Ismail , Çakıroğlu Ramazan, Acir Adem, AN ARTIFICIAL NEURAL NETWORK AND TAGUCHI INTEGRATED APPROACH TO INVESTIGATION OF HEAT TRANSFER AND PRESSURE DROP IN THE SOLAR AIR HEATER , Heat Transfer Research, 54, 3, 2023. Crossref

Forthcoming Articles

Effective Efficiency Analysis of Artificially Roughed Solar Air Heater MAN AZAD Energy, Exergy-Emission Performance Investigation of Heat Exchanger with Turbulators Inserts and Ternary Hybrid Nanofluid Ranjeet Rai, Vikash Kumar, Rashmi Rekha Sahoo Temperature correction method of radiation thermometer based on the nonlinear model fitted from spectral emissivity measurements of Ni-based alloy Yanfen Xu, kaihua zhang, Kun Yu, Yufang Liu Analysis of Thermal Performance in a Two-phase Thermosyphon loop based on Flow Visualization and an Image Processing Technique Avinash Jacob Balihar, Arnab Karmakar, Avinash Kumar, Smriti Minj, P L John Sangso Investigation of the Effect of Dead State Temperature on the Performance of Boron Added Fuels and Different Fuels Used in an Internal Combustion Engine. Irfan UÇKAN, Ahmet Yakın, Rasim Behçet PREDICTION OF PARAMETERS OF BOILER SUPERHEATER BASED ON TRANSFER LEARNING METHOD Shuiguang Tong, Qi Yang, Zheming Tong, Haidan Wang, Xin Chen A temperature pre-rectifier with continuous heat storage and release for waste heat recovery from periodic flue gas Hengyu Qu, Binfan Jiang, Xiangjun Liu, Dehong Xia Study on the Influence of Multi-Frequency Noise on the Combustion Characteristics of Pool Fires in Ship Engine Rooms Zhilin Yuan, Liang Wang, Jiasheng Cao, Yunfeng Yan, Jiaqi Dong, Bingxia Liu, Shuaijun Wang Experimental study on two-phase nonlinear oscillation behavior of miniaturized gravitational heat pipe Yu Fawen, Chaoyang Zhang, Tong Li, Yuhang Zhang, Wentao Zheng Flow boiling heat transfer Coefficient used for the Design of the Evaporator of a Refrigeration Machine using CO2 as Working Fluid Nadim KAROUNE, Rabah GOMRI Analyzing The Heat and Flow Characteristics In Spray Cooling By Using An Optimized Rectangular Finned Heat Sink Altug Karabey, Kenan Yakut Thermal management of lithium-ion battery packs by using corrugated channels with nano-enhanced cooling Fatih Selimefendigil, Aykut Can, Hakan Öztop Convective heat transfer inside a rotating helical pipe filled with saturated porous media Krishan Sharma, Deepu P, Subrata Kumar Preparation method and thermal performance of a new ultra-thin flexible flat plate heat pipe Xuancong Zhang, Jinwang Li, Qi Chen Influence of Temperature Gradients and Fluid Vibrations on the Thermocapillary Droplet Behavior in a Rotating Cylinder Yousuf Alhendal The Effect of Corrugation on Heat Transfer and Pressure Drop in a Solar Air Heater: A Numerical Investigation Aneeq Raheem, Waseem Siddique, Shoaib A.Warraich, Khalid Waheed, Inam Ul Haq, Muhammad Tabish Raheem, Muhammad Muneeb Yaseen Investigation of the Effect of Using Different Nanofluids on the Performance of the Organic Rankine Cycle Meltem ARISU, Tayfun MENLİK Entropy generation and heat transfer performance of cylindrical tube heat exchanger with perforated conical rings: a numerical study Anitha Sakthivel, Tiju Thomas Molecular dynamics study of the thermal transport properties in the graphene/C3N multilayer in-plane heterostructures Junjie Zhu, Jifen Wang, Xinyi Liu, Kuan Zhao Flow boiling critical heat flux in a small tube for FC-72 Yuki Otsuki, Makoto Shibahara, Qiusheng Liu, Sutopo Fitri STUDY OF FORCED ACOUSTIC OSCILLATIONS INFLUENCE ON METHANE OXIDATION PROCESS IN OXYGEN-CONTAINING FLOW OF HYDROGEN COMBUSTION PRODUCTS Anastasiya Krikunova, Konstantin Arefyev, Ilya Grishin, Maxim Abramov, Vladislav Ligostaev, Evgeniy Slivinskii, Vitaliy Krivets Examining the Synergistic Use of East-West Reflector and Coal Cinder in Trapezoidal Solar Pond through Energy Analysis VINOTH KUMAR J, AMARKARTHIK ARUNACHALAM
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain