Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Heat Transfer Research

Impact factor: 0.868

ISSN Print: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014006686
pages 399-415

THERMODYNAMIC ANALYSIS AND COMPARISON OF SINGLE EFFECT WATER−LITHIUM BROMIDE ABSORPTION HEAT TRANSFORMER UNDER THE HIGH- AND LOW-TEMPERATURE CONDITIONS

Zhaolong Hao
Institute of Chemical Engineering, Dalian University of Technology, Dalian 116012, China
Xuehu Ma
Dalian University of Technology
Zhong Lan
Institute of Chemical Engineering, Dalian University of Technology, Dalian 116012, China

ABSTRACT

In this paper, the thermodynamic analysis and comparison of the performance of a single-effect water−lithium bromide absorption heat transformer in high- and low-temperature conditions is presented. The energy, exergy, and the energy level difference methods have been used to analyze the performance of the system for both conditions in detail. The analysis involves the effect of the gross temperature lift (GTL) on the coefficient of performance (COP), exergetic efficiency, exergy destruction, and energy level difference for all the components in high- and low-temperature conditions. The results indicate that the exergetic efficiency for the high-temperature conditions varies between 0.8 and 0.9 which is higher and more stable than that for the low-temperature conditions varying between 0.4 and 0.7. The absorber and the solution heat exchanger are the components wherein the irreversibilities for the high-temperature conditions are higher than those for the low-temperature conditions at some GTL. This means that these components should be carefully designed and optimized for the high-temperature conditions. Furthermore, the energy level difference analysis methodology used here is found to be a powerful and systematic tool in disclosing the mechanism of exergy destruction in energy conversion processes.