Library Subscription: Guest
Heat Transfer Research

Published 18 issues per year

ISSN Print: 1064-2285

ISSN Online: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

NUMERICAL SOLUTION OF NATURAL-CONVECTION FLOW IN ENCLOSURES: AN IMPLICIT VORTICITY BOUNDARY CONDITION TYPE METHOD

Volume 50, Issue 14, 2019, pp. 1383-1416
DOI: 10.1615/HeatTransRes.2019028547
Get accessGet access

ABSTRACT

This paper presents a numerical method for solving viscous incompressible Navier-Stokes equations and their application to natural-convection flow. A generalized solution methodology based on the existing vorticity-stream function methods has been developed to show that the vorticity boundary condition being implemented is explicit in nature. A novel two-dimensional numerical solution method of vorticity-stream function formulation is proposed by implementing vorticity boundary conditions implicitly. The developed method is applied to various types of two-dimensional boundaries encountered in natural-convection flows such as: a) regular (square/rectangular) boundary enclosures, b) nonrectangular/irregular boundary enclosures, c) boundary with obstructions. The results obtained match closely with standard reference results available in the literature demonstrating the second-order overall accuracy. Convergence behavior of implicit vorticity boundary conditions shows that the present method exhibits faster convergence and better stability over the conventional vorticity-stream function formulation. The present method requires solution of only one Poisson equation per each iteration time step, thus reducing the overall complexity of the algorithm equivalent to solving a heat conduction-type Poisson problem.

REFERENCES
  1. Aydin, O., Unal, A., and Ayhan, T., Natural Convection in Rectangular Enclosures Heated from One Side and Cooled from the Ceiling, Int. J. Heat Mass Transf., vol. 42, no. 13, pp. 2345-2355, 1999. DOI: 10.1016/s0017-9310(98)00319-6.

  2. Anderson, J.D., Computational Fluid Dynamics. The Basics with Applications, 1st Ed., New York: McGraw-Hill, 1995.

  3. Basak, T., Roy, S., Krishna Babu, S., and Balakrishnan, A., Finite Element Analysis of Natural-Convection Flow in an Isosceles Triangular Enclosure Due to Uniform and Non-Uniform Heating at the Side Walls, Int. J. Heat Mass Transf., vol. 51, nos. 17-18, pp. 4496-4505, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.12.018.

  4. Brown, D.L., Cortez, R., and Minion, M.L., Accurate Projection Methods for the Incompressible Navier-Stokes Equations, J. Comput. Phys., vol. 168, no. 2, pp. 464-499, 2001. DOI: 10.1006/jcph.2001.6715.

  5. Chai, J. and Yap, Y., A Distance-Function-Based Cartesian (DIFCA) Grid Method for Irregular Geometries, Int. J. Heat Mass Transf., vol. 51, nos. 7-8, pp. 1691-1706, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.07.012.

  6. Chamkha, A.J. and Al-Mudhaf, A., Double-Diffusive Natural Convection in Inclined Porous Cavities with Various Aspect Ratios and Temperature-Dependent Heat Source or Sink, Heat Mass Transf., vol. 44, no. 6, pp. 679-693, 2007. DOI: 10.1007/ s00231-007-0299-7.

  7. Chorin, A.J., Numerical Solution of the Navier-Stokes Equations, Math. Comput., vol. 22, no. 104, pp. 745-745, 1968. DOI: 10.1090/s0025-5718-1968-0242392-2.

  8. Chorin, A.J., Vortex Sheet Approximation of Boundary Layers, J. Comput. Phys., vol. 27, no. 3, pp. 428-442, 1978. DOI: 10.1016/0021-9991(78)90019-0.

  9. Darwish, M., Asmar, D., and Moukalled, F., A Comparative Assessment within a Multigrid Environment of Segregated Pressure-Based Algorithms for Fluid Flow at all Speeds, Numer. Heat Transf., Part B: Fundamentals, vol. 45, no. 1, pp. 49-74, 2004. DOI: 10.1080/1040779049025487.

  10. De Vahl Davis, G. and Jones, I.P., Natural Convection in a Square Cavity: A Comparison Exercise, Int. J. Numer. Meth. Fluids, vol. 3, no. 3, pp. 227-248, 1983. DOI: 10.1002/fld.1650030304.

  11. De Vahl Davis, G., Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution, Int. J. Numer. Meth. Fluids, vol. 3, no. 3, pp. 249-264, 1983. DOI: 10.1002/fld.1650030305.

  12. Dennis, S.C. and Chang, G., Numerical Solutions for Steady Flow past a Circular Cylinder at Reynolds Numbers up to 100, J. FluidMech., vol. 42, no. 3, p. 471, 1970. DOI: 10.1017/s0022112070001428.

  13. E, W. and Liu, J., Gauge Method for Viscous Incompressible Flows, Commun. Math. Sci., vol. 1, no. 2, pp. 317-332, 2003. DOI: 10.4310/cms.2003.v1.n2.a6.

  14. E, W. and Liu, J., Projection Method I: Convergence and Numerical Boundary Layers, SIAM J. Numer. Analysis, vol. 3, vol. 4, pp. 1017-1057, 1995. DOI: 10.1137/0732047.

  15. E, W. and Liu, J., Vorticity Boundary Condition and Related Issues for Finite Difference Schemes, J. Comput. Phys., vol. 124, no. 2, pp. 368-382, 1996. DOI: 10.1006/jcph.1996.0066.

  16. El-Refaee, M.M., Elsayed, M.M., Al-Najem, N.M., and Noor, A.A., Natural Convection in Partially Cooled Tilted Cavities, Int. J. Numer. Meth. Fluids, vol. 28, no. 3, pp. 477-499, 1998. DOI: 10.1002/(sici)1097-0363(19980915)28:3<477::aid- fld725>3.0.co;2-t.

  17. Gresho, P.M. and Sani, R.L., Incompressible Flow and the Finite Element Method, 1st Ed., New York: Wiley, 1998.

  18. Gresho, P., Incompressible Fluid Dynamics: Some Fundamental Formulation Issues, Annu. Rev. Fluid Mech., vol. 23, no. 1, pp. 413-453, 1991. DOI: 10.1146/annurev.fluid.23.1.413.

  19. Guermond, J., Minev, P., and Shen, J., An Overview of Projection Methods for Incompressible Flows, Computer Meth. Appl. Mech. Eng., vol. 195, nos. 44-47, pp. 6011-6045, 2006. DOI: 10.1016/j.cma.2005.10.010.

  20. He, Z.Z., Xue, X., and Liu, J., An Effective Finite Difference Method for Simulation of Bioheat Transfer in Irregular Tissues, J. Heat Transf., vol. 135, no. 7, pp. 071003.1-8, 2013. DOI: 10.1115/1.4024064.

  21. Hoffmann, K.A. and Chiang, S.T., Computational Fluid Dynamics for Engineers, vol. 1, 4th Edition, Engineering Education Systems, 2000.

  22. Holtzman, G.A., Hill, R.W., and Ball, K.S., Laminar Natural Convection in Isosceles Triangular Enclosures Heated from Below and Symmetrically Cooled from Above, J. Heat Transf., vol. 122, no. 3, pp. 485-491, 2000. DOI:10.1115/1.1288707.

  23. Hou, T.Y. and Wetton, B.R., Stable Fourth Order Stream-Function Methods for Incompressible Flows with Boundaries, J. Comput. Math., vol. 27, no. 4, pp. 441-445, 2009. DOI: 10.4208/jcm.2009.27.4.012.

  24. Kozelkov, A., Lashkin, S., Efremov, V., Volkov, K., Tsibereva, Y., and Tarasova, N., An Implicit Algorithm of Solving Navier-Stokes Equations to Simulate Flows in Anisotropic Porous Media, Computers Fluids, vol. 160, pp. 164-174, 2018. DOI: 10.1016/j.compfluid.2017.10.029.

  25. Kuzhiveli, B.T. and Anilkumar, S.H., Natural Convective Heat and Fluid Flow in a Two-Dimensional Enclosure with an Isoflux Partition Utilizing Different Fluids, Heat Transf. Res., vol. 41, no. 2, pp. 107-127, 2010. DOI: 10.1615/heattransres.v41.i2.10.

  26. Kuznetsov, G.V. and Sheremet, M.A., Conjugate Natural Convection in an Enclosure with Local Heat Sources, Comput. Therm. Sci., vol. 1, no. 3, pp. 341-360, 2009. DOI: 10.1615/computthermalscien.v1.i3.60.

  27. LeVeque, R.J. and Li, Z., The Immersed Interface Method for Elliptic Equations with Discontinuous Coefficients and Singular Sources, SIAM J. Numer. Analysis, vol. 31, no. 4, pp. 1019-1044, 1994. DOI: 10.1137/0731054.

  28. Li, Z. and Wang, C., A Fast Finite Difference Method for Solving Navier-Stokes Equations on Irregular Domains, Commun. Math. Sci., vol. 1, no. 1, pp. 180-196, 2003. DOI: 10.4310/cms.2003.v1.n1.a11.

  29. Lilek, Z., Muzaferija, S., and Peric, M., Efficiency and Accuracy Aspects of a Full-Multigrid Simple Algorithm for Three-Dimensional Flows, Numer. Heat Transf., PartB: Fundamentals, vol. 31, no. 1, pp. 23-42, 1997. DOI: 10.1080/10407799708915097.

  30. Mittal, R.S. and Iaccarino, G., Immersed Boundary Methods, Annu. Rev. FluidMech., vol. 37, no. 1, pp. 239-261, 2005. DOI: 10.1146/annurev.fluid.37.061903.175743.

  31. Napolitano, M., Pascazio, G., and Quartapelle, L., A Review of Vorticity Conditions in the Numerical Solution of the Z-y Equations, Computers Fluids, vol. 28, no. 2, pp. 139-185, 1999. DOI: 10.1016/s0045-7930(98)00024-3.

  32. Nishimura, T., Wakamatsu, M., and Morega, A.M., Oscillatory Double-Diffusive Convection in a Rectangular Enclosure with Combined Horizontal Temperature and Concentration Gradients, Int. J. Heat Mass Transf., vol. 41, no. 11, pp. 1601-1611, 1998. DOI: 10.1016/s0017-9310(97)00271-8.

  33. Olshanskii, M.A., Heister, T., Rebholz, L.G., and Galvin, K.J., Natural Vorticity Boundary Conditions on Solid Walls, Computer Meth. Appl. Mech. Eng., vol. 297, pp. 18-37, 2015. DOI: 10.1016/j.cma.2015.08.011.

  34. Orszag, S.A., Israeli, M., and Deville, M.O., Boundary Conditions for Incompressible Flows, J. Sci. Comput., vol. 1, no. 1, pp. 75-111, 1986. DOI: 10.1007/bf01061454.

  35. Patankar, S. and Spalding, D., A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows, Int. J. Heat Mass Transf., vol. 15, no. 10, pp. 1787-1806, 1972. DOI: 10.1016/0017-9310(72)90054-3.

  36. Patankar, S.V., A Calculation Procedure for Two-Dimensional Elliptic Situations, Numer. Heat Transf., vol. 4, no. 4, pp. 409-425, 1981. DOI: 10.1080/01495728108961801.

  37. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York: Hemisphere, pp. 41-77, 1980. DOI: 10.1201/9781482234213-4.

  38. Pekmen, B.A., Numerical Investigation of Natural Convection in an Enclosure with a Conducting Solid Body, Heat Transf. Res., vol. 49, no. 2, pp. 157-172, 2018. DOI: 10.1615/heattransres.2017016351.

  39. Peskin, C.S., The Immersed Boundary Method, Acta Numerica, vol. 11, pp. 479-517, 2002. DOI: 10.1017/s0962492902000077.

  40. Peyret, R. and Taylor, T.D., Computational Methods for Fluid Flow, Springer Series in Computational Physics, Berlin: Springer, 1983. DOI: 10.1007/978-3-642-85952-6.

  41. Qin, Q., Xia, Z., and Tian, Z.F., High Accuracy Numerical Investigation of Double-Diffusive Convection in a Rectangular Enclosure with Horizontal Temperature and Concentration Gradients, Int. J. Heat Mass Transf., vol. 71, pp. 405-423, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.035.

  42. Quartapelle, L. and Valz-Gris, F., Projection Conditions on the Vorticity in Viscous Incompressible Flows, Int. J. Numer. Meth. Fluids, vol. 1, no. 2, pp. 129-144, 1981. DOI: 10.1002/fld.1650010204.

  43. Quarteroni, A., Saleri, F., and Veneziani, A., Factorization Methods for the Numerical Approximation of Navier-Stokes Equations, Computer Meth. Appl. Mech. Eng., vol. 188, nos. 1-3, pp. 505-526, 2000. DOI: 10.1016/s0045-7825(99)00192-9.

  44. Rahman, M. and Sharif, M.A., Numerical Study of laminar Natural Convection in Inclined Rectangular Enclosures of Various Aspect Ratios, Numer. Heat Transf., Part A: Applications, vol. 44, no. 4, pp. 355-373, 2003. DOI: 10.1080/713838233.

  45. Reddy, N. and Murugesan, K., Numerical Study of Double-Diffusive Convection in a Heated Lid-Driven Cavity with Mass Diffusive Side Walls, Comput. Therm. Sci., vol. 8, no. 4, pp. 381-398, 2016. DOI: 10.1615/computthermal-scien.2016016887.

  46. Rhie, C.M. and Chow, W.L., Numerical Study of the Turbulent Flow past an Airfoil with Trailing Edge Separation, AIAA J., vol. 21, no. 11, pp. 1525-1532, 1983. DOI: 10.2514/3.8284.

  47. Ridouane, E.H. and Campo, A., Relationship between Thermal Convection Intensity and Aspect Ratio of Two Triangular Cavities Inscribed in Horizontal Rectangular Cavities, Int. J. Numer. Meth. Heat Fluid Flow, vol. 16, no. 3, pp. 338-355, 2006. DOI: 10.1108/09615530610649753.

  48. Roache, P.J., Fundamentals of Computational Fluid Dynamics, 2nd Ed., Socorro, New Mexico: Hermosa, 1998. Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd Ed., Philadelphia: SIAM, 2003.

  49. Saha, S.C. and Gu, Y., Natural Convection in a Triangular Enclosure Heated from Below and Non-Uniformly Cooled from Top, Int. J. Heat Mass Transf., vol. 80, pp. 529-538, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.09.047.

  50. Saha, S.C. and Khan, M., A Review of Natural Convection and Heat Transfer in Attic-Shaped Space, Energy Buildings, vol. 43, no. 10, pp. 2564-2571, 2011. DOI: 10.1016/j.enbuild.2011.06.020.

  51. Sahin, M. and Owens, R.G., A Novel Fully Implicit Finite Volume Method Applied to the Lid-Driven Cavity Problem. Part I: High Reynolds Number Flow Calculations, Int. J. Numer. Meth. Fluids, vol. 42, no. 1, pp. 57-77, 2003. DOI: 10.1002/ fld.442.

  52. Selimefendigil, F. and Chamkha, A.J., Natural Convection of a Hybrid Nanofluid-Filled Triangular Annulus with an Opening, Comput. Therm. Sci., vol. 8, no. 6, pp. 555-566, 2016. DOI: 10.1615/computthermalscien.2016018833.

  53. Sheremet, M.A., Numerical Simulation of Conjugate Natural Convection in an Inclined Cylinder, Heat Transf. Res., vol. 42, no. 5, pp. 473-485, 2011. DOI: 10.1615/heattransres.v42.i5.60.

  54. Sheu, T.W., Lin, R., and Liu, G., Development of a Continuity-Preserving Segregated Method for Incompressible Navier-Stokes Equations, Computer Meth. Appl. Mech. Eng., vol. 196, nos. 1-3, pp. 502-515, 2006. DOI: 10.1016/j.cma.2006.05.004.

  55. Shi, X. and Khodadadi, J.M., Laminar Natural Convection Heat Transfer in a Differentially Heated Square Cavity Due to a Thin Fin on the Hot Wall, J. Heat Transf., vol. 125, no. 4, pp. 624-634, 2003. DOI: 10.1115/1.1571847.

  56. Shirokoff, D. and Rosales, R., An efficient Method for the Incompressible Navier-Stokes Equations on Irregular Domains with No-Slip Boundary Conditions, High Order up to the Boundary, J. Comput. Phys., vol. 230, no. 23, pp. 8619-8646, 2011. DOI: 10.1016/j.jcp.2011.08.011.

  57. Tannehill, J.C., Anderson, D.A., and Pletcher, I.H., Computational Fluid Mechanics and Heat Transfer, 2nd Ed., New York: Taylor and Francis, 1997.

  58. Tasnim, S.H. and Collins, M.R., Numerical Analysis of Heat Transfer in a Square Cavity with a Baffle on the Hot Wall, Int. Commun. Heat Mass Transf., vol. 31, no. 5, pp. 639-650, 2004. DOI: 10.1016/s0735-1933(04)00051-x.

  59. Zhao, B.A. and Tian, Z., High-Resolution High-Order Upwind Compact Scheme-Based Numerical Computation of Natural-Convection Flows in a Square Cavity, Int. J. Heat Mass Transf., vol. 98, pp. 313-328, 2016. DOI: 10.1016/j.ijheatmas- stransfer.2016.03.032.

CITED BY
  1. Balam Nagesh Babu, Gupta Akhilesh, A fourth-order accurate finite difference method to evaluate the true transient behaviour of natural convection flow in enclosures, International Journal of Numerical Methods for Heat & Fluid Flow, 30, 3, 2020. Crossref

Forthcoming Articles

Effective Efficiency Analysis of Artificially Roughed Solar Air Heater MAN AZAD Energy, Exergy-Emission Performance Investigation of Heat Exchanger with Turbulators Inserts and Ternary Hybrid Nanofluid Ranjeet Rai, Vikash Kumar, Rashmi Rekha Sahoo Temperature correction method of radiation thermometer based on the nonlinear model fitted from spectral emissivity measurements of Ni-based alloy Yanfen Xu, kaihua zhang, Kun Yu, Yufang Liu Analysis of Thermal Performance in a Two-phase Thermosyphon loop based on Flow Visualization and an Image Processing Technique Avinash Jacob Balihar, Arnab Karmakar, Avinash Kumar, Smriti Minj, P L John Sangso Investigation of the Effect of Dead State Temperature on the Performance of Boron Added Fuels and Different Fuels Used in an Internal Combustion Engine. Irfan UÇKAN, Ahmet Yakın, Rasim Behçet PREDICTION OF PARAMETERS OF BOILER SUPERHEATER BASED ON TRANSFER LEARNING METHOD Shuiguang Tong, Qi Yang, Zheming Tong, Haidan Wang, Xin Chen A temperature pre-rectifier with continuous heat storage and release for waste heat recovery from periodic flue gas Hengyu Qu, Binfan Jiang, Xiangjun Liu, Dehong Xia Study on the Influence of Multi-Frequency Noise on the Combustion Characteristics of Pool Fires in Ship Engine Rooms Zhilin Yuan, Liang Wang, Jiasheng Cao, Yunfeng Yan, Jiaqi Dong, Bingxia Liu, Shuaijun Wang Experimental study on two-phase nonlinear oscillation behavior of miniaturized gravitational heat pipe Yu Fawen, Chaoyang Zhang, Tong Li, Yuhang Zhang, Wentao Zheng Flow boiling heat transfer Coefficient used for the Design of the Evaporator of a Refrigeration Machine using CO2 as Working Fluid Nadim KAROUNE, Rabah GOMRI Analyzing The Heat and Flow Characteristics In Spray Cooling By Using An Optimized Rectangular Finned Heat Sink Altug Karabey, Kenan Yakut Thermal management of lithium-ion battery packs by using corrugated channels with nano-enhanced cooling Fatih Selimefendigil, Aykut Can, Hakan Öztop Convective heat transfer inside a rotating helical pipe filled with saturated porous media Krishan Sharma, Deepu P, Subrata Kumar Preparation method and thermal performance of a new ultra-thin flexible flat plate heat pipe Xuancong Zhang, Jinwang Li, Qi Chen Influence of Temperature Gradients and Fluid Vibrations on the Thermocapillary Droplet Behavior in a Rotating Cylinder Yousuf Alhendal The Effect of Corrugation on Heat Transfer and Pressure Drop in a Solar Air Heater: A Numerical Investigation Aneeq Raheem, Waseem Siddique, Shoaib A.Warraich, Khalid Waheed, Inam Ul Haq, Muhammad Tabish Raheem, Muhammad Muneeb Yaseen Investigation of the Effect of Using Different Nanofluids on the Performance of the Organic Rankine Cycle Meltem ARISU, Tayfun MENLİK Entropy generation and heat transfer performance of cylindrical tube heat exchanger with perforated conical rings: a numerical study Anitha Sakthivel, Tiju Thomas Molecular dynamics study of the thermal transport properties in the graphene/C3N multilayer in-plane heterostructures Junjie Zhu, Jifen Wang, Xinyi Liu, Kuan Zhao Flow boiling critical heat flux in a small tube for FC-72 Yuki Otsuki, Makoto Shibahara, Qiusheng Liu, Sutopo Fitri STUDY OF FORCED ACOUSTIC OSCILLATIONS INFLUENCE ON METHANE OXIDATION PROCESS IN OXYGEN-CONTAINING FLOW OF HYDROGEN COMBUSTION PRODUCTS Anastasiya Krikunova, Konstantin Arefyev, Ilya Grishin, Maxim Abramov, Vladislav Ligostaev, Evgeniy Slivinskii, Vitaliy Krivets Examining the Synergistic Use of East-West Reflector and Coal Cinder in Trapezoidal Solar Pond through Energy Analysis VINOTH KUMAR J, AMARKARTHIK ARUNACHALAM
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain