Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Heat Transfer Research
IF: 0.404 5-Year IF: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Print: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2019028603
pages 1333-1350

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF THE EFFECTIVENESS OF IMPINGEMENT–FILM HYBRID COOLING

Jingyu Zhang
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China; Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing, Jiangsu 210016, China
Jieli Wei
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
Fei Wang
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
Yi Jin
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China; Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing, Jiangsu 210016, China
Xiaomin He
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China; Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing, Jiangsu 210016, China

ABSTRACT

This paper reports on an experimental and numerical study of an impingement-film hybrid cooling technique. The effects of four important parameters on cooling effectiveness are discussed, including density flow ratio (DFR), length of inducting slab, jet-to-slab spacing, and axial location of jets. The temperatures of hot gas and coolant were 430 K and 300 K, respectively. The results show that the cooling effectiveness can be increased either by increasing the DFR or by increasing the length of the inducting slab. In the range of DFR higher than 2, reducing the jet-to-slab spacing will improve the cooling effectiveness significantly. The axial location of jets has little influence on cooling effectiveness in the present work.

REFERENCES

  1. Chen, M., Fundamentals of Viscous Fluid Dynamics, Beijing: Higher Education Press, 2002.

  2. Dutta, R., Dewan, A., and Srinivasan, B., Comparison of Various Integration to Wall (ITW) RANS Models for Predicting Turbulent Slot Jet Impingement Heat Transfer, Int. J. Heat Mass Transf, vol. 65, no. 5, pp. 750-764, 2013. DOI: 10.1016/j. ijheatmasstransfer.2013.06.056.

  3. Fang, Z.M. and Fu, X.Q., Calculation of Thermodynamic Process with Gas Meter, Beijing: National Defense Industry Press, 1987.

  4. Fechter, S., Terzis, A., Ott, P., Weigand, B., Wolfersdorf, J., and Cochet, M., Experimental and Numerical Investigation of Narrow Impingement Cooling Channels, Int. J. Heat Mass Transf., vol. 67, pp. 1208-1219, 2013. DOI: 10.1016/j.ijheat- masstransfer.2013.09.003.

  5. Horbach, T., Schulz, A., and Bauer, H.J., Trailing Edge Film Cooling of Gas Turbine Airfoils-Effects of Ejection Lip Geometry on Film Cooling Effectiveness and Heat Transfer, Heat Transf. Res., vol. 41, no. 8, pp. 849-865, 2010. DOI: 10.1615/ HeatTransRes.v41.i8.50.

  6. Immarigeon, A. and Hassan, I., An Advanced Impingement/Film Cooling Scheme for Gas Turbines-Numerical Study, Int. J. Numer. Meth. Heat Fluid Flow, vol. 16, no. 4, pp. 470-493, 2006. DOI: 10.1108/09615530610653091.

  7. Jie, J., Hua, M.A., and Shan, J.R., Studies on the Distribution of Wall Temperature of Impingement/Film Cooling of Combustion Chambers (1) Experimentally, J. Propuls. Technol., vol. 15, pp. 14-17, 1994a.

  8. Jie, J., Hua, M.A., and Shan, J.R., Studies on the Distribution of Wall Temperature of Impingement/Film Cooling of Combustion Chambers (2) Theoretically, J. Propuls. Technol., vol. 15, pp. 34-40, 1994b.

  9. Lebedev, V.P., Lemanow, V.V., and Terekhov, V.I., Heat Transfer in a Wall Jet at High Turbulence of Concurrent Streams, Int. J. Heat Mass Transf, vol. 42, no. 4, pp. 599-612, 1999. DOI: 10.1016/s0017-9310(98)00180-x.

  10. Lee, J., Ren, Z., Ligrani, P., Lee, D.H., Fox, M.D., and Moon, H.-K., Cross-Flow Effects on Impingement Array Heat Transfer with Varying Jet-to-Target Plate Distance and Hole Spacing, Int. J. Heat Mass Transf., vol. 75, no. 75, pp. 534-544, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.040.

  11. Lienhard IV, J.H. and Lienhard V, J.H., A Heat Transfer Textbook, 4th Ed., Cambridge: Phlogiston Press, 2012. Mongia, H.C., Engineering Aspects of Complex Gas Turbine Combustion Mixers. Part I: High AT, 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, Orinado, Florida, Report No. AIAA-2011- 0107, 2011. DOI: 10.2514/6.2011-107.

  12. Scibilia, M.F., Heat Transfer in a Forced Wall Jet on a Heated Rough Surface, J. Therm. Sci., vol. 9, pp. 85-92, 2000. DOI: 10.1007/s11630-000-0048-4.

  13. Shanley, A.I., Cooling Systems: Energy, Engineering and Applications, Hauppauge, NY: Nova Science Publishers Inc., pp. 37-68, 2011.

  14. Silieti, M., Kassab, A.J., and Divob, E., Film Cooling Effectiveness: Comparison of Adiabatic and Conjugate Heat Transfer CFD Models, Int. J. Therm. Sci, vol. 48, no. 12, pp. 2237-2248, 2009. DOI:10.1016/j.ijthermalsci.2009.04.007.

  15. Tangemann, R. and Gretler, W., The Computation of a Two-Dimensional Turbulent Wall Jet in an External Stream, J. Fluids Eng., vol. 123, pp. 154-157, 2001. DOI:10.1115/1.1331557.

  16. Tsai, Y.S., Hunt, J.C.R., Nieuwstadt, F.T.M., Westerweel, J., and Gunasekaran, B.P.N., Effect of Strong External Turbulence on a Wall Jet Boundary Layer, Flow Turbulence Combust., vol. 79, no. 2, pp. 155-174, 2007. DOI: 10.1007/s10494-007-9078-2.

  17. Wei, J., Zhang, J., Li, S., and Wang, F., Numerical Study on Impinging-Film Hybrid Cooling Effect with Different Geometries, J. Therm. Sci, vol. 92, pp. 199-216, 2015. DOI: 10.1016/j.ijthermalsci.2015.01.038.

  18. Zhang, J. and Jiao, K., Experimental Study on Impingement and Film Cooling of Gas Turbine Combustion Chamber, J. Aero-Space Power, vol. 7, pp. 375-377, 1992.

  19. Zuckerman, N. and Lior, N., Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling, Adv. Heat Transf., vol. 39, pp. 565-631, 2006. DOI: 10.1016/S0065-2717(06)39006-5.


Articles with similar content:

Numerical Study of on Cooling Performance for Multi-holes Steam Jet in the Internal Channel of a Hollow Turbine Blade
International Heat Transfer Conference 15, Vol.47, 2014, issue
Liang Xu, Wei Wang, Jianmin Gao, Zhang Shuai, Tieyu Gao
MODELING OF BLADE COOLING ON THE FIRST TWO TURBINE STAGES AND THE COOLING EFFECT ON THE GAS TURBINE PERFORMANCE
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.1, 2018, issue
Xianchang Li, Maryam Besharati-Givi
Development of a High Load Submerged Combustion Burner
International Journal of Fluid Mechanics Research, Vol.25, 1998, issue 1-3
K. S. Song, S. N. Lee, H. K. Yoon
NUMERICAL STUDY ON AERODYNAMIC LOSS OF A TURBINE BLADE WITH FILM COOLING OF FORWARD AND BACKWARD INJECTIONS
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.6, 2018, issue
Xianchang Li, Anil Prajapati
RECENT STUDIES IN TURBINE BLADE INTERNAL COOLING
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Michael Huh, Je-Chin Han