Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Heat Transfer Research
IF: 0.404 5-Year IF: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Print: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018019220
pages 899-914

EXPERIMENTAL STUDY OF ORGANIC RANKINE CYCLE SYSTEM USING SCROLL EXPANDER AND DIAPHRAGM PUMP AT DIFFERENT CONDENSING TEMPERATURES

Huan Xi
Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
Hong-Hu Zhang
Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
Ya-Ling He
Key Laboratory of Thermo-fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China

ABSTRACT

A small-scale RORC (organic Rankine cycle with a regenerator) system using a scroll expander and a diaphragm pump has been built. By using R123 as the working fluid, the expander, pump, and system performances are measured under different condensing temperatures. The maximum shaft power output of the expander obtained in this work is about 700 W. By increasing the shaft torque of the expander, the isentropic efficiency of the expander first increases and then decreases. The pressure ratio increases with increase of the shaft torque of the expander. The expander shows a highest shaft power output with the filling factor reaching 0.6—0.7. When Tc increases, both the pump work consumption and the pressure difference of the pump show an increasing trend, leading to an increase in the mass flow rate of the working fluid, which is the main reason for the increase of the shaft power output of the expander. The obtained minimum BWR is about 0.46, the maximum electricity efficiency of the pump is 34.2%. The maximum thermal and exergy efficiencies are 2.4% and 9.3%, respectively.


Articles with similar content:

EXPERIMENTAL STUDY ON PUMP APPLIED IN ORGANIC RANKINE CYCLE SYSTEM
Second Thermal and Fluids Engineering Conference, Vol.1, 2017, issue
Weicong Xu, Wen Su, Jianyuan Zhang, Shuai Deng, Li Zhao
PERFORMANCE ANALYSIS OF A-SI PHOTOVOLTAIC/THERMAL SYSTEM USING OPTIMIZED DIRECT ABSORPTION COLLECTOR
Journal of Enhanced Heat Transfer, Vol.19, 2012, issue 2
Chunhui Shou, Zhongyang Luo, Tingting Wu, Kefa Cen, Tao Wang, Mingjiang Ni, Jiafei Zhao, Yanmei Zhang
COMPARISON AND ANALYSIS ON THE PERFORMANCE OF R404A DIRECT CONTACT CONDENSATION REFRIGERATION CYCLE FOR LOW TEMPERATURE
International Heat Transfer Conference 16, Vol.23, 2018, issue
Jinghong Ning , Qiang Dong , Shengchun Liu
SIMULATION OF NATURAL GAS COMBINED CYCLE POWER PLANT AT ELEVATED TEMPERATURES
Second Thermal and Fluids Engineering Conference, Vol.14, 2017, issue
Todd M. Bandhauer, Achyut Paudel
L-Shaped Thermosyphon Loop with Vertical Evaporator for Power Electronics Cooling
International Heat Transfer Conference 15, Vol.12, 2014, issue
Thomas B. Grandinger, Francesco Agostini