Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Heat Transfer Research
IF: 0.404 5-Year IF: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Print: 1064-2285
ISSN Online: 2162-6561

Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2017017180
pages 1299-1312


Shufang Wang
College of Mechanical and Electrical Engineering, Beijing Union University, Beijing, 100020 China
Debao Zhou
Department of Mechanical and Industrial Engineering, University of Minnesota, Duluth, MN, 55812 USA
Zhiyong Yang
Astronautics Long March Rocket Technology Limited Company, Beij ing China, 100076


With the improvement of the integration technology, the heat-flux density in microchips has reached 1 kW/cm2. Traditional cooling methods cannot control the temperature below 393 K as desired. Thus chip cooling has become the bottleneck for further integration. To ensure a normal working condition, this paper proposed to use a microfluid to discharge the internal heat, by making the fluid flow through the integrated microchannels in a chip. To realize this, the present work firstly focused on the design of the microchannels based on a desired model of a microchip. Secondly, to find the optimized size of the microchannels, numerical simulation was performed. It was found that the diameter of the microchannels at 40 mm could keep the chip temperature around 393 K. Further experiments have been performed to verify the numerical results. Both the numerical and experimental results have shown that the highest temperature of a chip can be controlled to as low as 370 K through combining and adjusting the bidirectional flow, entering velocity, and entering temperature. These results proved the feasibility of the chip cooling concept using microchannels.