Library Subscription: Guest
Heat Transfer Research

Published 18 issues per year

ISSN Print: 1064-2285

ISSN Online: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

Heat Transfer in a Transverse Extended Cavity with Inclined Walls in a Turbulized Flow

Volume 37, Issue 5, 2006, pp. 383-394
DOI: 10.1615/HeatTransRes.v37.i5.20
Get accessGet access

ABSTRACT

Experimental investigations of the influence of an external degree of turbulence on heat transfer intensification in a cavity with a small aspect ratio, with the angles of inclination of the lateral walls being varied from 30° to 90°, were carried out. It is shown that in a rectangular cavity the average heat-transfer rate over the surface at a turbulence level Tu0 of 6.5% increases by a factor of 1.2, whereas at Tu0 = 16% − by a factor of 1.4. The visualization of the patterns of vortex formation has shown that at angles φ = 60° or 70° the flow becomes extremely unstable, depending on the Reynolds number. For these angles one observes a marked enhancement of heat transfer which is strengthened at a high flow turbulence.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain