Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Journal of Porous Media
IF: 1.49 5-Year IF: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Print: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v18.i7.20
pages 665-678

MULTIPLE SLIP EFFECTS ON UNSTEADY MHD REAR STAGNATION POINT FLOW OF NANOFLUIDS IN A DARCIAN POROUS MEDIUM

Waqar Khan
Prince Mohammad Bin Fahd University
Mohammed Jashim Uddin
School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; Department of Mathematics, American International University-Bangladesh, Banani, Dhaka 1213, Bangladesh
Ahmad I. Md. Ismail
School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia

ABSTRACT

The unsteady magnetohydrodynamic flow of a viscous incompressible fluid past a permeable vertical plate in a Darcian porous medium is investigated theoretically and numerically. A time-dependent magnetic field is applied normal to the plate. Cu-water nanofluid with different solid volume fraction of copper nanoparticles is considered. Using suitable similarity transformations, the governing partial differential equations are reduced to a system of nonlinear ordinary differential equations; linearized using a successive linearization method and then solved using a finite difference method. The effects of the controlling parameters on the dimensionless velocity, temperature, concentration, wall shear stress, heat and mass transfer rates are investigated. The numerical results are compared to published results and good agreement is observed.