Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Journal of Porous Media
IF: 1.49 5-Year IF: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Print: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v17.i7.40
pages 601-622

COMPUTATIONAL STUDY OF NON-NEWTONIAN THERMAL CONVECTION FROM A VERTICAL POROUS PLATE IN A NON-DARCY POROUS MEDIUM WITH BIOT NUMBER EFFECTS

V. Ramachandra Prasad
Department of Mathematics, Madanapalle Institute of Technology and Science, Madanapalle, India
S. Abdul Gaffar
Department of Mathematics, Jawaharlal Nehru Technological University Anantapuram, Anantapuram 515002, India
E. Keshava Reddy
Department of Mathematics, JNTUA College of Engineering, Anantapuram 515002, India
Osman Anwar Beg
Gort Engovation-Aerospace, Medical and Energy Engineering, Gabriel's Wing House, 15 Southmere Avenue, Bradford, BD73NU, United Kingdom

ABSTRACT

In this article, the nonlinear steady state boundary layer flow and heat transfer of an incompressible Eyring−Powell non-Newtonian fluid from a vertical porous plate in a non-Darcy porous medium is investigated. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a secondorder versatile, implicit finite-difference Keller box technique. The numerical code is validated with previous studies. The influence of a number of emerging nondimensional parameters, namely, Eyring−Powell rheological fluid parameters (ε), the local non-Newtonian parameter based on length scale (δ), Prandtl number (Pr), Darcy number (Da), Biot number (Bi), Forchheimer parameter (Λ), and dimensionless tangential coordinate (ξ) on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. Validation with earlier Newtonian studies is presented, and excellent correlation is achieved. It is found that the velocity is reduced with increasing fluid parameter (ε) and Forchheimer parameter (Λ). But temperature is enhanced with increasing fluid parameter and Forchheimer parameter. Increasing fluid parameter δ is the local non-Newtonian parameter based on length scale x, and the Darcy parameter, Da, enhances the velocity but reduces the temperature. The increasing Biot number, Bi, is observed to enhance both velocity and temperature, and an increasing Prandtl number decreases the velocity and temperature.


Articles with similar content:

THERMO-DIFFUSION AND DIFFUSION-THERMO EFFECTS ON FREE CONVECTION FLOW PAST A HORIZONTAL CIRCULAR CYLINDER IN A NON-DARCY POROUS MEDIUM
Journal of Porous Media, Vol.16, 2013, issue 4
V. Ramachandra Prasad, Vasu B, O. Anwar Bég
MHD NATURAL CONVECTION BOUNDARY LAYER FLOW OF NANOFLUID OVER A VERTICAL CONE WITH CHEMICAL REACTION AND SUCTION/INJECTION
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 2
Patakota Sudarsana Reddy, Ali J. Chamkha, P. Sreedevi
THERMOPHORESIS AND HEAT GENERATION/ABSORPTION EFFECTS ON MAGNETOHYDRODYNAMIC FLOW OF JEFFREY FLUID OVER POROUS OSCILLATORY STRETCHING SURFACE WITH CONVECTIVE BOUNDARY CONDITIONS
Journal of Porous Media, Vol.21, 2018, issue 6
Nasir Ali, Sami Ullah Khan
EFFECTS OF THERMAL RADIATION ON STEADY MHD MIXED CONVECTIVE HEAT TRANSFER FLOW OVER AN IMPERMEABLE INCLINED PLATE EMBEDDED IN A POROUS MEDIUM
Journal of Porous Media, Vol.14, 2011, issue 7
Orhan Aydin, Ahmet Kaya
ANALYTICAL SOLUTION FOR NATURAL CONVECTION HEAT TRANSFER ABOUT A VERTICAL CONE IN POROUS MEDIA FILLED WITH A NON-NEWTONIAN Al2O3-WATER NANOFLUID
Computational Thermal Sciences: An International Journal, Vol.5, 2013, issue 1
Davood Ganji (D.D. Ganji), S. Tavakoli, Alireza Rasekh