Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Journal of Porous Media

Impact factor: 0.807

ISSN Print: 1091-028X
ISSN Online: 1934-0508

Journal of Porous Media

DOI: 10.1615/JPorMedia.v14.i5.40
pages 411-422


Mohamed El Amine Ben Amara
Laboratoire de la Maitrise de l'Energie Eolienne et de la Valorisation des Déchets, Centre des Recherches et des Technologies de l'Energie, Technopole de Borj-Cédria, Route Touristique de Soliman, B.P. 95, 2050 Hammam-Lif, Tunisia
Sassi Ben Nasrallah
Laboratoire d'Études des Systèmes Thermiques et Énergétiques, École Nationale d'Ingénieurs de Monastir, Monastir 5019 Tunisia


In this paper we describe the liquid progression in a non-uniform capillary in the case where the inertia effects are considered. The approach is based on the application of Newton’s second law on the liquid column. Numerical solutions are obtained by solving a general differential equation describing the time-dependent rise of the liquid-gas interface. The effect of capillary geometry on the progress of the liquid interface has been investigated in conical and sinusoidal capillaries while varying several parameters, such as cone opening angle α in both converging and diverging tubes and the undulation of a sinusoidal capillary. The influence of inertia and viscosity on the equilibrium height and on the rise dynamics is investigated. The results allow better comprehension of the capillary rise in complex geometry under inertia effects and these might provide further explanation for fluid distribution in modeled porous media.