Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Journal of Porous Media
IF: 1.49 5-Year IF: 1.159 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN Print: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v12.i4.10
pages 289-300

A Macroscopic Model for Countercurrent Bioheat Transfer in a Circulatory System

Akira Nakayama
Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan; School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
Fujio Kuwahara
Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561 Japan
Wei Liu
School of Energy and Power Engineering, Huazhong University of Science & Tecnology, 1037 Luo Yu Rd. Hongshan District, Wuhan 430074, China

ABSTRACT

The volume averaging theory of porous media has been applied to obtain a general set of macroscopic governing equations for countercurrent bioheat transfer between terminal arteries and veins in the circulatory system. Capillaries providing a continuous connection between the countercurrent terminal arteries and veins are modeled, introducing the perfusion bleed-off rate. Three distinctive energy equations are derived for the arterial blood phase, venous blood phase, and tissue phase. It has been found that the resulting model, under appropriate conditions, naturally reduces to those introduced by Chato, Bejan, Weinbaum and Jiji, and others for countercurrent heat transfer for the case of closely aligned pairs of vessels. A useful expression for the longitudinal effective thermal conductivity for the tissue has been derived without dropping the perfusion source terms. The expression turns out to be quite similar to Bejan's and Weinbaum and Jiji's expressions. Furthermore, the effect of spatial distribution of perfusion bleed-off rate on total countercurrent heat transfer has been investigated in depth exploiting the present bioheat transfer model.


Articles with similar content:

HYPO- AND HYPERTHERMIA EFFECTS ON MACROSCOPIC FLUID TRANSPORT IN TUMORS
Computational Thermal Sciences: An International Journal, Vol.11, 2019, issue 1-2
Marcello Iasiello, Assunta Andreozzi, Paolo Netti
HYPERTHERMIA EFFECTS ON MACROSCOPIC FLUID TRANSPORT IN TUMORS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Marcello Iasiello, Assunta Andreozzi, Paolo Netti
THERMAL EFFECT IN FSPL HEAT CONDUCTION MODEL IRRADIATED BY LASER HEAT SOURCE
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Tadkeshwart N. Mishra, Kabindra Nath Rai
COUPLED CONDUCTION-TURBULENT CONVECTION IN A CIRCULAR TUBE
International Heat Transfer Conference 6, Vol.2, 1978, issue
John A. Fillo , J. R. Powell
Mass Transport Effects on Coronary Flow and Left Ventricular Mechanics
International Journal of Fluid Mechanics Research, Vol.25, 1998, issue 1-3
Rafael Beyar, Samuel Sideman, D. Zinemanas