Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Journal of Porous Media
IF: 1.49 5-Year IF: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Print: 1091-028X
ISSN Online: 1934-0508

Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2019025756
pages 1043-1063


Tharaka Dilanka Rathnaweera
Department of Civil Engineering, Monash University, Building 60, Melbourne, Victoria, 3800, Australia
P. G. Ranjith
Department of Infrastructure Engineering, The University of Melbourne, Building 176, Melbourne, Victoria, 3010, Australia
M. S. A. Perera
Department of Civil Engineering, Monash University, Building 60, Melbourne, Victoria, 3800, Australia; Department of Infrastructure Engineering, The University of Melbourne, Building 176, Melbourne, Victoria, 3010, Australia


The aim of this paper is to provide a comprehensive review of potential changes in the chemical and mineralogical environments of saline aquifers due to CO2 injection under in situ conditions, and the influence of these changes on the hydromechanical behavior of reservoir rock. The effect of aquifer characteristics, such as pH and ionic composition, on the hydromechanical properties of reservoir rock are also considered. However, the CO2 injection-induced hydromechanical properties of saline aquifers vary significantly with the properties of the aquifer and the injecting gas, which causes this to be complex, and to date, insufficient studies have been undertaken. Furthermore, this study identifies the chemically corrosive nature of different host fluids, which leads to decreased rock strength and increased crack propagation velocity during CO2 sequestration.


  1. Aagaard, P. and Helgeson, H.C., Thermodynamic and Kinetic Constraints on Reaction Rates among Minerals and Aqueous Solutions: I, Theoretical Considerations, American J. Sci., vol. 282, no. 3, pp. 237-285, 1982.

  2. Aagaard, P., Oelkers, E.H., and Schott, J., Glauconite Dissolution Kinetics and Application to CO2 Storage in the Subsurface, Geochimica et Cosmochimica Acta, vol. 68, no. 11, p. A143, 2004.

  3. Andre, L., Audigane, P., Azaroual, M., and Menjoz, A., Numerical Modeling of Fluid-Rock Chemical Interactions at the Supercritical CO2-Liquid Interface during CO2 Injection into a Carbonate Reservoir, the Dogger Aquifer (Paris Basin, France), Energy Convers. Manage., vol. 48, no. 6, pp. 1782-1797,2007.

  4. Atkinson, B.K., A Fracture Mechanics Study of Subcritical Tensile Cracking of Quartz in Wet Environments, Pure Appl. Geophys., vol. 117, no. 5, pp. 1011-1024, 1979.

  5. Atkinson, B.K., Subcritical Crack Growth in Geological Materials, J. Geophys. Res.: Solid Earth, vol. 89, no. B6, pp. 4077-4114, 1984.

  6. Atkinson, B.K. and Meredith, P.G., Stress Corrosion Cracking of Quartz: A Note on the Influence of Chemical Environment, Tectonophys., vol. 77, nos. 1-2, pp. T1-T11,1981.

  7. Audigane, P., Gaus, I., Czernichowski-Lauriol, I., Pruess, K., and Xu, T., Two-Dimensional Reactive Transport Modeling of CO2 Injection in a Saline Aquifer at the Sleipner Site, North Sea, American J., Sci., vol. 307, no. 7, pp. 974-1008, 2007.

  8. Azaroual, M., Pruess, K., and Fouillac, C., Feasibility of Using Supercritical CO2 as Heat Transmission Fluid in the EGS (Enhanced Geothermal Systems) Integrating the Carbon Storage Constraints, Engine-Enhanced Geothermal Innovative Network for Europe, Workshop 2, Volterra, Italy, 2007.

  9. Bachu, S., Sequestration of CO2 in Geological Media: Criteria and Approach for Site Selection in Response to Climate Change, Energy Convers. Manage., vol. 41, no. 9, pp. 953-970,2000.

  10. Baker, J.C., Bai, G.P., Hamilton, P.J., Golding, S.D., and Keene, J.B., Continental-Scale Magmatic Carbon Dioxide Seepage Recorded by Dawsonite in the Bowen-Gunnedah-Sydney Basin System, Eastern Australia, J. Sedimentary Res., vol. 65, no. 3, pp. 522-530, 1995.

  11. Baudracco, J. and Tardy, Y., Dispersion and Flocculation of Clays in Unconsolidated Sandstone Reservoirs Subjected to Percolation with NaCl and CaCl2 Solutions at Different Temperatures, Appl. Clay Sci., vol. 3, no. 4, pp. 347-360, 1988.

  12. Baudracco, J. and Aoubouazza, M., Study of the Variations in Permeability and Cationic Exchange Kinetics during Solution Changes in Clay Sandstone, Chem. Geol., vol. 84, nos. 1-4, pp. 235-238, 1990.

  13. Baudracco, J. and Aoubouazza, M., Permeability Variations in Berea and Vosges Sandstone Submitted to Cyclic Temperature Percolation of Saline Fluids, Geotherm., vol. 24, nos. 5-6, pp. 661-677,1995.

  14. Berg, S., Oedai, S., and Ott, H., Displacement and Mass Transfer between Saturated and Unsaturated CO2-Brine Systems in Sandstone, Int. J. Greenhouse Gas Control, vol. 12, pp. 478-492, 2013.

  15. Bouchard, R. and Delaytermoz, A., Integrated Path towards Geological Storage, Energy, vol. 29, nos. 9-10, pp. 1339-1346,2004.

  16. Brady, P.V. and Walther, J.V., Kinetics of Quartz Dissolution at Low Temperatures, Chem. Geol., vol. 82, pp. 253-264, 1990.

  17. Brantley, S.L., Reaction Kinetics of Primary Rock-Forming Minerals under Ambient Conditions, Surface Ground Water, Weathering, Soils, vol. 5, pp. 73-118, 2004.

  18. Brantley, S.L., Kinetics of Mineral Dissolution, in Kinetics of Water-Rock Interaction, New York: Springer, pp. 151-210, 2008.

  19. Breen, K.J., Angelo, C.G., Masters, R.W., and Sedam, A.C., Chemical and Isotopic Characteristics of Brines from Three Oil- and Gas-Producing Sandstones in Eastern Ohio, with Applications to the Geochemical Tracing of Brine Sources, Columbus, OH: US Dept. of the Interior, US Geological Survey, Rep. No. 84-4314,1985.

  20. Bruant, R.G., Guswa, A.J., Celia, M.A., and Peters, C.A., Safe Storage of CO2 in Deep Saline Aquifers, Environ. Sci. Tech., vol. 36, no. 11, pp. 240A-245A, 2002.

  21. Carroll, S.A. and Knauss, K.G., Dependence of Labradorite Dissolution Kinetics on CO2 (aq), Al (aq), and Temperature, Chem. Geol, vol. 217, nos. 3-4, pp. 213-225,2005.

  22. Casey, W.H. and Sposito, G., On the Temperature Dependence of Mineral Dissolution Rates, Geochimica Cosmochimica Acta, vol. 56, no. 10, pp. 3825-3830, 1992.

  23. Chester, F.M., Chester, J.S., Kronenberg, A.K., and Hajash, A., Subcritical Creep Compaction of Quartz Sand at Diagenetic Conditions: Effects of Water and Grain Size, J. Geophy. Res.: Solid Earth, vol. 112, no. B6, 2007.

  24. Choi, J.H., Chae, B.G., and Kim, H.J., Effects of Temperature and Pressure on Quartz Dissolution, J. Eng. Geol., vol. 25, no. 1, pp. 1-8,2015.

  25. Croize, D., Bjerlykke, K., Jahren, J., and Renard, F., Experimental Mechanical and Chemical Compaction of Carbonate Sand, J. Geophys. Res.: Solid Earth, vol. 115, no. B11, p. 24, 2010.

  26. Dahab, A.S., Omar, A.E., El-Gassier, M.M., and El Kariem, H.A., Formation Damage Effects due to Salinity, Temperature and Pressure in Sandstone Reservoirs as Indicated by Relative Permeability Measurements, J. Petrol. Sci. Eng., vol. 6, no. 4, pp. 403-412, 1992.

  27. De Silva, G.P.D., Ranjith, P.G., and Perera, M.S.A., Geochemical Aspects of CO2 Sequestration in Deep Saline Aquifers: A Review, Fuel, vol. 155, pp. 128-143,2015.

  28. Dewers, T. and Hajash, A., Rate Laws for Water Assisted Compaction and Stress Induced Water Rock Interaction in Sandstones, J. Geophys. Res.: Solid Earth, vol. 100, no. B7, pp. 13093-13112, 1995.

  29. Dou, Q., Sun, Y., and Sullivan, C., Rock-Physics-Based Carbonate Pore Type Characterization and Reservoir Permeability Het-erogeneity Evaluation, Upper San Andres Reservoir, Permian Basin, West Texas, J. Appl. Geophys., vol. 74, no. 1, pp. 8-18, 2011.

  30. Dove, P.M. and Platt, F.M., Compatible Real-Time Rates of Mineral Dissolution by Atomic Force Microscopy (AFM), Chem. Geol, vol. 127, no. 4, pp. 331-338, 1996.

  31. Egermann, P., Bemer, E., and Zinszner, B., An Experimental Investigation of the Rock Properties Evolution Associated to Different Levels of CO2 Injection Like Alteration Processes, SCA Paper 34, pp. 12-16, 2006.

  32. Ellis, A., The Solubility of Calcite in Carbon Dioxide Solutions, American J. Sci, vol. 257, pp. 354-365, 1959.

  33. Farrar, C.D., Neil, J.M., and Howle, J.F., Magmatic Carbon Dioxide Emissions at Mammoth Mountain, California, US Geological Survey Water-Resource Investigations Report No. 98-4217, US Geological Survey, Sacramento, CA, pp. 1-17, 1999.

  34. Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J., and Withjack, M.O., A Review of Recent Developments Concerning the Structure, Mechanics and Fluid Flow Properties of Fault Zones, J. Structural Geol., vol. 32, no. 11, pp. 1557-1575,2010.

  35. Feng, X.T., Chen, S., and Zhou, H., Real-Time Computerized Tomography (CT) Experiments on Sandstone Damage Evolution during Triaxial Compression with Chemical Corrosion, Int. J. RockMech. Mining Sci., vol. 41, no. 2, pp. 181-192, 2004.

  36. Feucht, L.J. and Logan, J.M., Effects of Chemically Active Solutions on Shearing Behavior of a Sandstone, Tectonophys., vol. 175, nos. 1-3, pp. 159-176,1990.

  37. Freeze, R.A. and Cherry, J.A., Groundwater, Englewood Cliffs, NJ: Prentice Hall, 1979.

  38. Ganor, J., Mogollon, J.L., and Lasaga, A.C., The Effect of pH on Kaolinite Dissolution Rates and on Activation Energy, Geochimica et Cosmochimica Acta, vol. 59, no. 6, pp. 1037-1052, 1995.

  39. Gaus, I., Audigane, P., Andre, L., Lions, J., Jacquemet, N., Durst, P., Czernichowski-Lauriol, I., and Azaroual, M., Geochemical and Solute Transport Modelling for CO2 Storage, What to Expect from It?, Int. J. Greenhouse Gas Control, vol. 2, no. 4, pp. 605-625, 2008.

  40. Geilikman, M.B. and Dusseault, M.B., Mechano-Chemical Corrosion of Shales in Borehole-Mud Contact, Rock Mech. Tools. Technol., vol. 1, pp. 959-964,1996.

  41. Giorgis, T., Carpita, M., and Battistelli, A., 2D Modeling of Salt Precipitation during the Injection of Dry CO2 in a Depleted Gas Reservoir, Energy Conver, Man, vol. 48, no. 6, pp. 1816-1826, 2007.

  42. Gledhill, D.K. and Morse, J.W., Calcite Solubility in Na-Ca-Mg-Cl Brines, Chem. Geol., vol. 233, nos. 3-4, pp. 249-256, 2006.

  43. Hangx, S.J. and Spiers, C.J., Reaction of Plagioclase Feldspars with CO2 under Hydrothermal Conditions, Chem. Geol., vol. 265, nos. 1-2, pp. 88-98,2009.

  44. Hangx, S.J.T., Spiers, C.J., and Peach, C.J., Creep of Simulated Reservoir Sands and Coupled Chemical-Mechanical Effects of CO2 Injection, J. Geophys. Res. : Solid Earth, vol. 115, no. B9, 2010.

  45. Hangx, S., van der Linden, A., Marcelis, F., and Bauer, A., The Effect of CO2 on the Mechanical Properties of the Captain Sandstone: Geological Storage of CO2 at the Goldeneye Field (UK), Int. J. Greenhouse Gas Control, vol. 19, pp. 609-619, 2013.

  46. Hellevang, H., Aagaard, P., Oelkers, E.H., and Kvamme, B., Can Dawsonite Permanently Trap CO2?, Environ. Sci. Technol, vol. 39, no. 21, pp. 8281-8287, 2005.

  47. Hem, J.D., Study and Interpretation of the Chemical Characteristics of Natural Water, U.S. Geol. Survey Water-Supply, vol. 11, pp. 1473-1483, 1959.

  48. Hovorka, S.D., Doughty, C., and Holtz, M.H., Testing Efficiency of Storage in the Subsurface: Frio Brine Pilot Experiment, Greenhouse Gas Control Technol, vol. 7, pp. 1361-1366, 2005.

  49. Icenhower, J.P. and Dove, P.M., The Dissolution Kinetics of Amorphous Silica into Sodium Chloride Solutions: Effects of Temperature and Ionic Strength, Geochimica et Cosmochimica Acta, vol. 64, no. 24, pp. 4193-4203, 2000.

  50. Johnson, J.W., Nitao, J.J., and Knauss, K.G., Reactive Transport Modelling of CO2 Storage in Saline Aquifers to Elucidate Fundamental Processes, Trapping Mechanisms and Sequestration Partitioning, Geological Soc, London, Special Pub, vol. 233, no. 1,pp. 107-128,2004a.

  51. Johnson, J.W., Nitao, J.J., and Morris, J.P., Reactive Transport Modelling of Cap Rock Integrity during Natural and Engineered CO2 Storage, in Carbon Dioxide Capture for Storage in Deep Geologic Formations, D.C. Thomas and S.M. Benson, Eds., Oxford, UK: Elsevier, pp. 787-813, 2004b.

  52. Kaszuba, J.P., Janecky, D.R., and Snow, M.G., Carbon Dioxide Reaction Processes in a Model Brine Aquifer at 200 C and 200 Bars: Implications for Geologic Sequestration of Carbon, Appl. Geochem., vol. 18, no. 7, pp. 1065-1080, 2003.

  53. Kharaka, Y.K., Thordsen, J.J., Hovorka, S.D., Nance, H.S., Cole, D.R., Phelps, T.J., and Knauss, K.G., Potential Environmental Issues of CO2 Storage in Deep Saline Aquifers: Geochemical Results from the Frio-I Brine Pilot Test, Texas, USA, Appl. Geochem, vol. 24, no. 6, pp. 1106-1112, 2009.

  54. Knauss, K.G. and Wolery, T.J., The Dissolution Kinetics of Quartz as a Function of pH and Time at 70 C, Geochimica et Cosmochimica Acta, vol. 52, no. 1, pp. 43-53, 1988.

  55. Krauskopf, K. and Bird, D.B., Introduction to Geochemistry, Third Edition, London: McGrawHill Education, 1995.

  56. Kumar, A., Noh, M.H., Ozah, R.C., Pope, G.A., Bryant, S.L., Sepehrnoori, K., and Lake, L.W., Reservoir Simulation of CO2 Storage in Aquifers, SPEJ., vol. 10, no. 3, pp. 336-348, 2005.

  57. Kummerow, J. and Spangenberg, E., Experimental Evaluation of the Impact of the Interactions of CO2-SO2, Brine, and Reservoir Rock on Petrophysical Properties: A Case Study from the Ketzin Test Site, Germany, Geochem., Geophys., Geosyst., vol. 12, no. 5,2011.

  58. Lasaga, A.C., Chemical Kinetics of'Water-Rock Interactions, J. Geophys., Res., Solid Earth, vol. 89,no. B6,pp. 4009-4025,1984.

  59. Lasaga, A.C., Theory of Crystal Growth and Dissolution, in Kinetic Theory in the Earth Sciences, Princeton, NJ: Princeton University Press, pp. 581-712, 1998.

  60. Lasaga, A.C. and Luttge, A., Variation of Crystal Dissolution Rate based on a Dissolution Step Wave Model, Science, vol. 291, pp. 2400-2404,2001.

  61. Le Guen, Y., Renard, F., Hellmann, R., Brosse, E., Collombet, M., Tisserand, D., and Gratier, J.P., Enhanced Deformation of Limestone and Sandstone in the Presence of High PCO2 Fluids, J. Geophys. Res., vol. 112, pp. 5421-5437,2007.

  62. Li, Q., Wu, Z., Lei, X.L., Murakami, Y., and Satoh, T., Experimental and Numerical Study on the Fracture of Rocks during Injection of CO2-Saturated Water, Environ. Geol., vol. 51, no. 7, pp. 1157-1164, 2007.

  63. Liteanu, E., Niemeijer, A., Spiers, C.J., Peach, C.J., andBresser, J.H.P., The Effect of CO2 on Creep of Wet Calcite Aggregates, J. Geophys. Res.: Solid Earth, vol. 117, no. B3,2012.

  64. Lombard, J.M., Azaroual, M., Pironon, J., Broseta, D., Egermann, P., Munier, G., and Mouronval, G., CO2 Injectivity in Geological Storages: An Overview of Program and Results of the Geocarbone-Injectivity Project, Oil Gas Sci. Techno.-Revue de 1'Institut Frangais du Petrole, vol. 65, no. 4, pp. 533-539,2010.

  65. Madland, M.V., Finsnes, A., Alkafadgi, A., Risnes, R., and Austad, T., The Influence of CO2 Gas and Carbonate Water on the Mechanical Stability of Chalk, J. Petrol. Sci. Eng., vol. 51, pp. 149-168,2006.

  66. Marbler, H., Erickson, K.P., Schmidt, M., Lempp, C., and Pollmann, H., Geomechanical and Geochemical Effects on Sandstones Caused by the Reaction with Supercritical CO2: An Experimental Approach to In Situ Conditions in Deep Geological Reservoirs, Environ. Earth Sci, vol. 4, pp. 123-132,2013.

  67. Marini, L., Geological Sequestration of Carbon Dioxide: Thermodynamics, Kinetics, and Reaction Path Modeling, Amsterdam, Netherlands: Elsevier, 2007.

  68. Martin, R.J. and Durham, W.B., Mechanisms of Crack Growth in Quartz, J. Geophys. Res., vol. 80, no. 35, pp. 4837-4844,1975.

  69. Morse, J.W., Arvidson, R.S., and Luttge, A., Calcium Carbonate Formation and Dissolution, Chem. Rev, vol. 107, no. 2, pp. 342-381,2007.

  70. Mukhopadhyay, B. and Walther, J.V., Acid-Base Chemistry of Albite Surfaces in Aqueous Solutions at Standard Temperature and Pressure, Chem. Geol, vol. 174, no. 4, pp. 415-443, 2001.

  71. Naseem, S., Rafique, T., Bashir, E., Bhanger, M.I., Laghari, A., and Usmani, T.H., Lithological Influences on Occurrence of High-Fluoride Groundwater in Nagar Parkar Area, Thar Desert, Pakistan, Chemosphere, vol. 78, no. 11, pp. 1313-1321,2010.

  72. Nghiem, L., Sammon, P., Grabenstetter, J., and Ohkuma, H., Modeling CO2 Storage in Aquifers with a Fully-Coupled Geochemical EOS Compositional Simulator, in SPE/DOE Symposium on Improved Oil Recovery, Richardson, TX: Society of Petroleum Engineers, 2004.

  73. Nguyen, M.C., Zhang, X., Wei, N., Li, J., Li, X., Zhang, Y., and Stauffer, P.H., An Object-Based Modeling and Sensitivity Analysis Study in Support of CO2 Storage in Deep Saline Aquifers at the Shenhua Site, Ordos Basin, Geomech. Geophys. Geo-Energy Geo-Resour., vol. 3, no. 3, pp. 293-314,2017.

  74. Olajire, A.A., A Review of Mineral Carbonation Technology in Sequestration of CO2, J. Petrol. Sci. Eng., vol. 109, pp. 364-392, 2013.

  75. Omar, A., Effect of Brine Composition and Clay Content on the Permeability Damage of Sandstone Cores, J. Petrol. Sci. Eng., vol. 4, no. 3, pp. 245-256, 1990.

  76. Orr Jr., F.M., Storage of Carbon Dioxide in Geologic Formations, J. Petrol. Technol., vol. 56, pp. 90-97, 2004.

  77. Palandri, J.L., Rosenbauer, R.J., and Kharaka, Y.K., Ferric Iron in Sediments as a Novel CO2 Mineral Trap: CO2-SO2 Reaction with Hematite, Appl. Geochem, vol. 20, no. 11, pp. 2038-2048, 2005.

  78. Peacock, D.C.P. and Mann, A., Evaluation of the Controls on Fracturing in Reservoir Rocks, J. Petrol. Geol., vol. 28, no. 4, pp. 385-396, 2005.

  79. Perera, M.S.A., Ranjith, P.G., Choi, S.K., Bouazza, A., Kodikara, J., and Airey, D., A Review of Coal Properties Pertinent to Carbon Dioxide Sequestration in Coal Seams: With Special Reference to Victorian Brown Coals, Environ. Earth Sci., vol. 64, no. 1,pp. 223-235,2011.

  80. Perera, M.S.A., Gamage, R.P., Rathnaweera, T.D., Ranathunga, A.S., Koay, A., and Choi, X., A Review of CO2-Enhanced Oil Recovery with a Simulated Sensitivity Analysis, Energies, vol. 9, no. 7, p. 481, 2016a.

  81. Perera, M.S.A., Rathnaweera, T.D., Ranjith, P.G., Wanniarachchi, W.A.M., Nasvi, M.C.A., Abdulagatov, I.M., and Haque, A., Laboratory Measurement of Deformation-Induced Hydro-Mechanical Properties of Reservoir Rock in Deep Saline Aquifers: An Experimental Study of Hawkesbury Formation, Marine Petrol. Geol., vol. 77, pp. 640-652, 2016b.

  82. Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., The Kinetics of Calcite Dissolution in CO2-Water Systems at 5 to 60 C and 0.0 to 1.0 atm CO2, American J. Sci, vol. 278, no. 2, pp. 179-216, 1978.

  83. Pokrovsky, O.S., Golubev, S.V., Schott, J., and Castillo, A., Calcite, Dolomite and Magnesite Dissolution Kinetics in Aqueous Solutions at Acid to Circumneutral pH, 25 to 150 C and 1 to 55 atmpCO2: New Constraints onCO2 Sequestration in Sedimentary Basins, Chem. Geol, vol. 265, nos. 1-2, pp. 20-32, 2009.

  84. Probst, P., Numerical Simulations of CO2 Injection into Saline Aquifers: Estimation of Storage Capacity and Arrival Times Using Multiple Realizations of Heterogeneous Permeability Fields, Master's, Department of Hydraulic Engineering, University of Stuttgart, Stuttgart, Germany, 2008.

  85. Rathnaweera, T.D., Ranjith, P.G., and Perera, M.S.A., Salinity-Dependent Strength and Stress-Strain Characteristics of Reservoir Rocks in Deep Saline Aquifers: An Experimental Study, Fuel, vol. 122, pp. 1-11, 2014.

  86. Rathnaweera, T.D., Ranjith, P.G., Perera, M.S.A., Haque, A., Lashin, A., Al Arifi, N., Chandrasekharam, D., Yang, S.Q., Xu, T., Wang, S.H., and Yasar, E., CO2-Induced Mechanical Behaviour of Hawkesbury Sandstone in the Gosford Basin: An Experimental Study, Mater. Sci. Eng.: A, vol. 641, pp. 123-137, 2015.

  87. Rathnaweera, T.D., Ranjith, P.G., Perera, M.S.A., and De Silva, V.R.S., Development of a Laboratory-Scale Numerical Model to Simulate the Mechanical Behaviour of Deep Saline Reservoir Rocks under Varying Salinity Conditions in Uniaxial and Triaxial Test Environments, Measurement, vol. 101, pp. 126-137,2017a.

  88. Rathnaweera, T.D., Ranjith, P.G., Perera, M.S.A., Ranathunga, A.S., Wanniarachchi, W.A.M., Yang, S.Q., Lashin, A., and Al Arifi, N., An Experimental Investigation of Coupled Chemico-Mineralogical and Mechanical Changes in Varyingly-Cemented Sandstones upon CO2 Injection in Deep Saline Aquifer Environments, Energy, vol. 133, pp. 404-414,2017b.

  89. Ranganathan, P., van Hemert, P., Rudolph, E.S.J., and Zitha, P.Z., Numerical Modeling of CO2 Mineralisation during Storage in Deep Saline Aquifers, Energy Procedia, vol. 4, pp. 4538-4545,2011.

  90. Ranjith, P.G., Perera, M., and Khan, E., A Study of Safe CO2 Storage Capacity in Saline Aquifers: A Numerical Study, Int. J. Energy Res, vol. 37, pp. 189-199, 2013.

  91. Rao, Q.H., Wang, Z., Xie, H.F., and Xie, Q., Experimental Study of Mechanical Properties of Sandstone at High Temperature, J. Central South University Technol., vol. 14, no. 1, pp. 478-483,2007.

  92. Reddy, M.M., Kinetics of Calcium Carbonate Formation: Internationale Vereinigung fur Theoretische und Angewandte Limnologie, Verhandlungen, vol. 19, no. 1, pp. 429-438, 1975.

  93. Rochelle, C.A., Czernichowski-Lauriol, I., and Milodowski, A.E., The Impact of Chemical Reactions on CO2 Storage in Geological Formations: A Brief Review, Geol. Soc, London, Special Pub., vol. 233, no. 1, pp. 87-106, 2004.

  94. Rodriguez, K. and Araujo, M., Temperature and Pressure Effects on Zeta Potential Values of Reservoir Minerals, J. Colloid Interface Sci., vol. 300, no. 2, pp. 788-794,2006.

  95. Rosso, J.J. and Rimstidt, J.D., A High Resolution Study of Forsterite Dissolution Rates, Geochimica et Cosmochimica Acta, vol. 64, no. 5, pp. 797-811,2000.

  96. Rosenbauer, R.J., Bischoff, J.L., and Potter, J.M., A Flexible Au-Ir Cell with Quick Assembly for Hydrothermal Experiments, American Mineralogist, vol. 78, nos. 11-12, pp. 1286-1289, 1993.

  97. Ruiz-Agudo, E., Putnis, C.V., and Putnis, A., Coupled Dissolution and Precipitation at Mineral-Fluid Interfaces, Chem. Geol., vol. 383, pp. 132-146,2014.

  98. Sass, B.M., Gupta, N., Ickes, J.A., Engelhard, M.H., Baer, D.R., Bergman, P., Byrer, C., and Boyle, E.J., Interaction of Rock Minerals with Carbon Dioxide and Brine: A Hydrothermal Investigation, J. Energy Environ., vol. 2, pp. 23-31,2002.

  99. Schutjens, P.M., Experimental Compaction of Quartz Sand at Low Effective Stress and Temperature Conditions, J. Geol. Soc., vol. 148, no. 3, pp. 527-539, 1991.

  100. Seto, M., Nag, D.K., Vutukuri, V.S., and Katsuyama, K., Effect of Chemical Additives on the Strength of Sandstone, Int. J. Rock Mech. Mining Sci, vol. 34, nos. 3-4, pp. 280.e1-280.e11, 1997.

  101. Shao, H., Ray, J.R., and Jun, Y.S., Effects of Salinity and the Extent of Water on Supercritical CO2-Induced Phlogopite Dissolution and Secondary Mineral Formation, Environ. Sci. Technol., vol. 45, no. 4, pp. 1737-1743, 2011.

  102. Shukla, R., Ranjith, P., Haque, A., and Choi, X., A Review of Studies on CO2 Sequestration and Caprock Integrity, Fuel, vol. 89, no. 10, pp. 2651-2664,2010.

  103. Shukla, R., Ranjith, P.G., Choi, S.K., Haque, A., Yellishetty, M., and Hong, L., Mechanical Behaviour of Reservoir Rock under Brine Saturation, Rock Mech. Rock Eng., vol. 46, no. 1, pp. 83-93, 2013.

  104. Sjoberg, E.L., A Fundamental Equation for Calcite Dissolution Kinetics, Geochimica et Cosmochimica Acta, vol. 40, no. 4, pp. 441-447, 1976.

  105. SjOberg, E.L. and Rickard, D.T., Temperature Dependence of Calcite Dissolution Kinetics between 1 and 62 C at pH 2.7 to 8.4 in Aqueous Solutions, Geochimica et Cosmochimica Acta, vol. 48, no. 3, pp. 485-493, 1984.

  106. Sminchak, J., Gupta, N., Byrer, C., and Bergman, P., Issues Related to Seismic Activity Induced by the Injection of CO2 in Deep Saline Aquifers, National Energy Technology Laboratory, Pittsburgh, PA, and Morgantown, WV, United States, 2001.

  107. Sorai, M. and Sasaki, M., Dissolution Kinetics of Anorthite in a Supercritical CO2-Water System, American Mineralogist, vol. 95, nos. 5-6, pp. 853-862, 2010.

  108. Sun, Y.F., Effects of Pore Structure on Elastic Wave Propagation in Rocks, AVO Modelling, J. Geophys. Eng., vol. 1, pp. 268-276, 2004.

  109. Swolfs, H., Influence of Pore Fluid Chemistry and Temperature on Fracture of Sandstone under Confining Pressure, PhD, Texas A&M University, 1971.

  110. van Lier, J.A., de Bruyn, P.L., and Overbeek, J.T.G., The Solubility of Quartz, J. Phys. Chem., vol. 64, no. 11, pp. 1675-1682, 1960.

  111. Vialle, S. and Vanorio, T., Laboratory Measurements of Elastic Properties of Carbonate Rocks during Injection of Reactive CO2 Saturated Water, Geophy. Res. Lett., vol. 38, no. 1, 2011.

  112. Wiebe, R., The Binary System Carbon Dioxide-Water under Pressure, Chem. Rev., vol. 29, pp. 475-481, 1941.

  113. White, A.F. and Brantley, S.L., The Effect of Time on the Weathering of Silicate Minerals: Why do Weathering Rates Differ in the Laboratory and Field?, Chem. Geol., vol. 202, nos. 3-4, pp. 479-506, 2003.

  114. Wilkinson, M., Haszeldine, R.S., Fallick, A.E., Odling, N., Stoker, S.J., and Gatliff, R.W., CO2-Mineral Reaction in a Natural Analogue for CO2 Storage-Implications for Modeling, J. Sedimentary Res., vol. 79, no. 7, pp. 486-494, 2009.

  115. Xiao, T., Dai, Z., McPherson, B., Viswanathan, H., and Jia, W., Reactive Transport Modeling of Arsenic Mobilization in Shallow Groundwater: Impacts of CO2 and Brine Leakage, Geomech. Geophys. Geo-Energy Geo-Resour., vol. 3, no. 3, pp. 339-350, 2017.

  116. Xu, T., Apps, J.A., and Pruess, K., Mineral Sequestration of Carbon Dioxide in a Sandstone-Shale System, Chem. Geol, vol. 217, nos. 3-4, pp. 295-318,2005.

  117. Xu, T., Kharaka, Y.K., Doughty, C., Freifeld, B.M., and Daley, T.M., Reactive Transport Modeling to Study Changes in Water Chemistry Induced by CO2 Injection at the Frio-I Brine Pilot, Chem. Geol, vol. 271, nos. 3-4, pp. 153-164, 2010.

  118. Zhang, D., Ranjith, P.G., and Perera, M.S.A., The Brittleness Indices Used in Rock Mechanics and Their Application in Shale Hydraulic Fracturing: A Review, J. Petrol. Sci. Eng., vol. 143, pp. 158-170, 2016.

  119. Zerai, B., Saylor, B.Z., and Matisoff, G., Computer Simulation of CO2 Trapped through Mineral Precipitation in the Rose Run Sandstone, Ohio, Appl. Geochem., vol. 21, no. 2, pp. 223-240,2006.

  120. Zhu, W., Baud, P., and Wong, T.F., Micromechanics of Cataclastic Pore Collapse in Limestone, J. Geophys. Res.: Solid Earth, vol. 115, no. B4,2010.

Articles with similar content:

Journal of Porous Media, Vol.22, 2019, issue 12
Wei Tian, Detang Lu, Zhiwei Lu, Peichao Li
Special Topics & Reviews in Porous Media: An International Journal, Vol.5, 2014, issue 2
S. Jafar Fathi, S. Alireza Tabatabae-Nejad, Sina Shaddel
Journal of Porous Media, Vol.17, 2014, issue 4
Maurice B. Dusseault, Ali Shafiei
Journal of Porous Media, Vol.16, 2013, issue 2
Saeed Abbasi, Abbas Shahrabadi, Mohammad Saadat, Hassan Golghanddashti
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 1
Behzad Rostami, Kamran Hassani, M. R. Yassin, Shahab Ayatollahi