Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Journal of Porous Media
IF: 1.49 5-Year IF: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Print: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2018028668
pages 1121-1136

THE ROLE OF FRACTURE CAPILLARY PRESSURE ON THE BLOCK-TO-BLOCK INTERACTION PROCESS

Morteza Dejam
Department of Petroleum Engineering, College of Engineering and Applied Science, University of Wyoming, 1000 E. University Avenue, Laramie, Wyoming 82071-2000, USA

ABSTRACT

Characterization of fractures and the study of multiphase fluid movement through fractures in fractured porous media present difficult challenges to reservoir engineering. Interaction between porous matrix blocks and fractures plays a significant role in oil recovery from double-porosity reservoirs. The block-to-block interaction (or capillary continuity) between porous matrix blocks is a key contributor to the gas-oil gravity drainage mechanism in the gas-invaded zone of naturally fractured reservoirs, which increases the oil recovery. In a continuum scale, fracture is a part of the stack of blocks where there is a pressure difference between the gas and oil phases inside the fracture (called fracture capillary pressure). However, the physics of this capillary pressure and how it affects the gravity drainage mechanism in a stack of porous matrix blocks through the block-to-block interaction process need to be addressed theoretically. In this work a direct fine-grid numerical simulation along with various fracture capillary pressure models, including zero, constant, and saturation-dependent Brooks and Corey (1964), van Genuchten (1980), and Dindoruk and Firoozabadi (1995) functions, are applied to study their influence on oil recovery and therefore the block-to-block interaction process in fractured porous media. Numerical simulation predictions show the positive effect of fracture capillary pressure on oil recovery of a stack porous matrix blocks. The results reveal that the zero fracture capillary pressure model results in a lower ultimate oil recovery factor (23.8%) as compared to the constant (25.8%) and saturation-dependent Brooks and Corey (1964) (28.1%), van Genuchten (1980) (27.5%), and Dindoruk and Firoozabadi (1995) (24.6%) models. These observations are in good agreement with the results in literature. The findings can improve our understanding of the role of fracture capillary pressure on the block-to-block interaction process, which is important in oil recovery from naturally fractured reservoirs using the gravity drainage mechanism.


Articles with similar content:

NUMERICAL SIMULATION OF COUNTERCURRENT SPONTANEOUS IMBIBITION OF CARBONATED WATER IN POROUS MEDIA
Journal of Porous Media, Vol.19, 2016, issue 7
Masoud Nasiri, Mohsen Abbaszadeh, Masoud Riazi
APPLYING THE CONTINUOUS-TIME RANDOM WALK MODEL TO NON-FICKIAN DISPERSION IN MISCIBLE DISPLACEMENT THROUGH CARBONATE ROCK
Journal of Porous Media, Vol.22, 2019, issue 1
Yeison Villamil, Osvair V. Trevisan, J. A. Vidal Vargas
FACTORS AFFECTING THE GRAVITY DRAINAGE MECHANISM FROM A SINGLE MATRIX BLOCK IN NATURALLY FRACTURED RESERVOIRS
Special Topics & Reviews in Porous Media: An International Journal, Vol.2, 2011, issue 2
Mohammadreza Kamyab, Vahid Mashayekhizadeh, Morteza Dejam, Mohammad Hossein Ghazanfari
EXPERIMENTAL INVESTIGATION OF TERTIARY OIL GRAVITY DRAINAGE IN FRACTURED POROUS MEDIA
Special Topics & Reviews in Porous Media: An International Journal, Vol.1, 2010, issue 2
Behzad Rostami, M. Rezaveisi, Shahab Ayatollahi, Riyaz Kharrat, C. Ghotbi
EFFECTS OF FRACTURE PROPERTIES ON THE BEHAVIOR OF FREE-FALL AND CONTROLLED GRAVITY DRAINAGE PROCESSES
Journal of Porous Media, Vol.15, 2012, issue 4
Nima Rezaei, Sohrab Zendehboudi, Ioannis Chatzis