Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Journal of Porous Media
IF: 1.061 5-Year IF: 1.151 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN Print: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2015012156
pages 997-1008

INFLUENCE OF VOLUMETRIC FIBER FRACTION AND HEATING TEMPERATURE ON HEAT TRANSFER CHARACTERISTICS OF LATENT HEAT STORAGE PARAFFIN WITH ALUMINUM FIBER MATERIALS

Naoto Haruki
Okayama Prefectural University
Akihiko Horibe
Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
Yoshihiko Sano
Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, 432-8561 Japan
Kohei Hachiya
Graduate School of Natural Science and Technology, Okayama University

ABSTRACT

Paraffin is used as a latent heat energy storage material because it has relatively high latent heat and various melting points. However, the low thermal conductivity of paraffin leads to more time in latent heat storage and release processes. Therefore, it is necessary to improve the latent heat storage and release processes of paraffin. It is noted that metal fiber materials are mixed with paraffin in order to enhance the effective thermal conductivity of paraffin. The present investigation experimentally deals with the heat storage and heat release process of paraffin with metal fiber materials as a function of the volumetric fiber fraction and heating temperature. As a result, the heat release characteristic of paraffin with metal fiber materials was improved by enhanced effective thermal conductivity. On the other hand, the heat storage process of paraffin with metal fiber materials was influenced by the natural convection flow, and the heat storage process was not improved because of the interaction between the enhanced effective thermal conductivity and suppression of the natural convection flow by the metal fiber materials.