Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Journal of Porous Media

Impact factor: 1.035

ISSN Print: 1091-028X
ISSN Online: 1934-0508

Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v12.i6.30
pages 519-535

Numerical Study of Chemically Reactive Buoyancy-Driven Heat and Mass Transfer across a Horizontal Cylinder in a High-Porosity Non-Darcian Regime

Joaquin Zueco
Thermal Engineering. and Fluids Departament. Technical University of Cartagena. Campus Muralla del Mar. Cartagena 30203. Spain
O. Anwar Bég
Fluid Mechanics, Nanosystems and Propulsion, Aeronautical and Mechanical Engineering, School of Computing, Science and Engineering, Newton Building, University of Salford, Manchester M54WT, United Kingdom
Tasveer A. Beg
Engineering Mechanics Associates, Manchester, M16, England, United Kingdom
Harmindar S. Takhar
Engineering Department, Manchester Metropolitan University, Oxford Rd., Manchester, M15GD, UK


We investigate the free convection boundary layer flow and heat and mass transfer across an isothermal cylinder embedded in an isotropic, homogenous, saturated porous regime with a first-order chemical reaction in the diffusing species. A Darcy-Forchheimer drag force model is implemented to simulate porous impedance effects in high-porosity media, which are encountered in various industrial and geophysical applications. The partial differential conservation equations are nondimensionalized and solved using a network simulation methodology. The effects of Darcy number, Forchheimer number, Schmidt number, and reaction parameter on dimensionless velocity, temperature, and species concentration distributions are studied in detail for the case of water of relevance to geohydraulic flows. Computations are also provided for the variation of local Nusselt number and local Sherwood number with various thermophysical parameters. Concentration is found to decrease continuously with distance into the boundary layer (y-coordinate) with an increase in chemical reaction parameter; values are markedly higher for the non-Darcian case than for the Darcian case. Temperatures are however increased by an increase in reaction parameter. Applications of the study include electrolysis processes, chemical filtration treatment systems, natural convection from buried waste canisters in geomaterials, geothermal systems, etc.