Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Journal of Porous Media
IF: 1.752 5-Year IF: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Print: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v2.i3.20
pages 231-249

Nonsimilar Combined Convection Flow over a Vertical Surface Embedded in a Variable Porosity Medium

Ali J. Chamkha
Department of Mechanical Engineering, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Kingdom of Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, P.O. Box 10021, Ras Al Khaimah, United Arab Emirates
Khalil Khanafer
Mechanical Engineering Department, Australian College of Kuwait, Safat, 13015

ABSTRACT

The problem of combined forced-free convection flow over an isothermal vertical surface embedded in a variable porosity, porous medium with heat generation or absorption is formulated. The formulation includes the porous medium inertia and boundary effects, variable porosity, and thermal dispersion. The developed governing equations are transformed into nonsimilarity equations that have the advantage of producing their solution at the leading edge of the surface. These equations are then solved numerically subject to appropriate boundary and matching conditions by an implicit, finite-difference method. Comparisons with previously reported numerical and experimental work on the special case where no porous medium is present are performed and found to be in excellent agreement. A parametric study of the physical parameters involved in the problem such as the particle diameter-based Reynolds number, the Grashof number, the flow-based Reynolds number, and the heat generation or absorption coefficient is conducted. The obtained results are illustrated graphically to show interesting features of the solution. It is found that flow separation exists for the case of opposing flow condition and that the presence of thermal dispersion is essential for this type of problem.


Articles with similar content:

Double-Diffusive Convective Flow of a Micropolar Fluid Over a Vertical Plate Embedded in a Porous Medium with a Chemical Reaction
International Journal of Fluid Mechanics Research, Vol.31, 2004, issue 6
Ali F. Al-Mudhaf, Ali J. Chamkha, Jasem Al-Yatama
LOCAL NONSIMILARITY SOLUTION ON MHD CONVECTIVE HEAT TRANSFER FLOW PAST A POROUS WEDGEIN THE PRESENCE OF SUCTION/INJECTION
Journal of Porous Media, Vol.13, 2010, issue 5
Azme B Khamis, Muhaimin
Non-Newtonian Power Law Fluid Flow and Heat Transfer in a Porous Medium Over a Nonisothermal Stretching Sheet
International Journal of Fluid Mechanics Research, Vol.35, 2008, issue 5
K. V. Prasad, P. S. Datti
THREE-DIMENSIONAL BOUNDARY-LAYER FLOW OVER AN EXPONENTIALLY STRETCHING SURFACE WITH THERMAL RADIATION
Heat Transfer Research, Vol.46, 2015, issue 6
Muhammad Y. Malik, Sohail Nadeem, Sajjad Rehman
Thermophoresis Particle Deposition: Natural Convection Interaction from Vertical Permeable Surfaces Embedded in a Porous Medium
Journal of Porous Media, Vol.12, 2009, issue 1
Hamzeh M. Duwairi, R. A. Damseh