Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Journal of Porous Media
IF: 1.49 5-Year IF: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Print: 1091-028X
ISSN Online: 1934-0508

Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2019026966
pages 1553-1571


Huijin Xu
Research Center of Sustainable Energy and Energy Storage, China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
Z. B. Xing
Zhongtong Bus Holding Co., Ltd., Liaocheng 252000, China
A. Ghahremannezhad
Department of Mechanical Engineering, University of California, Riverside, CA 92521-0425, USA


Highly conductive porous foams and nanofluids are efficient materials for enhancing heat transfer. This paper presents a numerical investigation of convective heat transfer of a nanofluid in porous foams using a lattice Boltzmann (LB) method. We model the nonequilibrium thermal transport of nanofluid and solid phases by considering the thermal conductivity difference of the nanofluid and the metal foam. Flow and heat transfer characteristics of nanofluids in metal foams are analyzed based on velocity and temperature fields. Effects of key parameters on flow and thermal performances are discussed. An entropy generation analysis is conducted for nanofluid convection in porous media. Results show that Nusselt number increases with a decrease in porosity and an increase in Reynolds number (Re), Darcy number (Da), thermal conductivities of nanoparticles and solid ligaments, and nanoparticle volume fraction. The performance evaluation criterion (PEC) is sensitive to Re in the range Re ≤ 600. This work provides a numerical procedure for the treatment of flow/thermal transport of nanofluids in porous media under the local thermal nonequilibrium (LTNE) condition.


  1. Abouei, M.A., Farhadi, M., Sedighi, K., and Latif, A.A., Lattice Boltzmann Simulation of Heat Transfer Enhancement in a Cold Plate Using Porous Medium, J. Heat Transf, vol. 135, pp. 803-816, 2013.

  2. Ata, A.S.V., Javaherdeh, K., and Ashorynejad, H.R., Magnetic Field Effects on Force Convection Flow of a Nanofluid in a Channel Partially Filled with Porous Media Using Lattice Boltzmann Method, Adv. Powder Technol., vol. 25, pp. 666-675, 2013.

  3. Bhattacharya, A., Calmidi, W., and Mahajan, R.L., Thermophysical Properties of High Porosity Metal Foams, Int. J. Heat Mass Transf., vol. 45, pp. 1017-1031,2002.

  4. Bhushan, B. and Jung, Y.C., Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction, Prog. Mater. Sci., vol. 56, no. 1, pp. 1-108,2011.

  5. Boomsma, K. and Poulikakos, D., On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam, Int. J. Heat Mass Transf, vol. 44, pp. 827-836, 2001.

  6. Buongiorno, J., Convective Transport in Nanofluids, ASMEJ. Heat Transf., vol. 128, pp. 240-250,2006.

  7. Che Sidik, N.A. and Aisyah Razali, S., Lattice Boltzmann Method for Convective Heat Transfer of Nanofluids-A Review, Renew. Sustain. Energy Rev., vol. 38, pp. 864-875, 2014.

  8. Gao, D., Chen, Z., Chen, L., and Zhang, D., A Modified Lattice Boltzmann Model for Conjugate Heat Transfer in Porous Media, Int. J. Heat Mass Transf, vol. 105, pp. 673-683,2017.

  9. Ghasemi, K. and Siavashi, M., MHD Nanofluid Free Convection and Entropy Generation in Porous Enclosures with Different Conductivity Ratios, J Magnet. Magnet. Mater., vol. 442, pp. 474-490, 2017.

  10. Guo, J., Fan, A., Zhang, X., and Liu, W., A Numerical Study on Heat Transfer and Friction Factor Characteristics of Laminar Flow in a Circular Tube Fitted with Center-Cleared Twisted Tape, Int. J. Therm. Sci., vol. 50, pp. 1263-1270,2011.

  11. Guo, Z. and Zhao, T.S., A Lattice Boltzmann Model for Convection Heat Transfer in Porous Media, Numer. Heat Transf., Part B: Fundamentals, vol. 47, pp. 157-177,2005.

  12. Hajipour, M. and Dehkordi, A.M., Mixed-Convection Flow of Al2O3-H2O Nanofluid in a Channel Partially Filled with Porous MetalFoam: Experimental and Numerical Study, Exp. Therm. Fluid Sci., vol. 53, pp. 46-56, 2014.

  13. Huang, Z.F., Nakayama, A., Yang, K., Yang, C., and Liu, W., Enhancing Heat Transfer in the Core Flow by Using Porous Medium Insert in a Tube, Int. J. Heat Mass Transf, vol. 53, pp. 1164-1174, 2010.

  14. Hunt, G., Karimi, N., and Torabi, M., Analytical Investigation of Heat Transfer and Classical Entropy Generation in Microreactors-The Influences of Exothermicity and Asymmetry, Appl. Therm. Eng., vol. 119, pp. 403-424, 2017.

  15. Karimipour, A., Esfe, M.H., and Safaei, M.R., Mixed Convection of Copper-Water Nanofluid in a Shallow Inclined Lid Driven Cavity Using the Lattice Boltzmann Method, Physica A Stat. Mech. Appl., vol. 402, pp. 150-168, 2014.

  16. Lee, S., Choi, S.U.S., Li, S., and Eastman, J.A., Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, J. Heat Transf., vol. 121, pp. 280-289, 1999.

  17. Li, P., Liu, Z., Liu, W., and Chen, G., Numerical Study on Heat Transfer Enhancement Characteristics of Tube Inserted with Centrally Hollow Narrow Twisted Tapes, Int. J. Heat Mass Transf, vol. 88, pp. 481-491, 2015.

  18. Lu, W., Zhao, C.Y., and Tassou, S.A., Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part I: Metal-Foam Filled Pipes, Int. J. Heat Mass Transf, vol. 49, pp. 2751-2761, 2006.

  19. Ma'iga, S.E.B., Palm, S.J., Nguyen, C.T., Roy, G., and Galanis, N., Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows, Int. J. Heat Fluid Flow, vol. 26, pp. 530-546,2005.

  20. Meghdadi Isfahani, A.H. and Afrand, M., Experiment and Lattice Boltzmann Numerical Study on Nanofluids Flow in a Micro-model as Porous Medium, Physica E: Low-Dimensional Syst. Nanostructures, vol. 94, pp. 1-21, 2017.

  21. Mohebbi, R., Rashidi, M.M., Izadi, M., Sidik, N.A.C., and Xian, H.W., Forced Convection of Nanofluids in an Extended Surfaces Channel Using Lattice Boltzmann Method, Int. J. Heat Mass Transf., vol. 117, pp. 1291-1303,2018.

  22. Nazari, M., Ashouri, M., Kayhani, M.H., and Tamayol, A., Experimental Study of Convective Heat Transfer of a Nanofluid through a Pipe Filled with Metal Foam, Int. J. Therm. Sci, vol. 88, pp. 33-39, 2015.

  23. Sakai, F., Li, W., and Nakayama, A., A Rigorous Derivation and Its Applications of Volume Averaged Transport Equations for Heat Transfer in Nanofluid Saturated Metal Foams, The 15th Int. Heat Transfer Conf, Tokyo, Japan, 2014.

  24. Seta, T., Takegoshi, E., Kitano, K., and Okui, K., Thermal Lattice Boltzmann Model for Incompressible Flows through Porous Media, J. Therm. Sci. Technol., vol. 1, pp. 90-100, 2016.

  25. Sheikholeslami, M., Numerical Investigation for CuO-H2O Nanofluid Flow in a Porous Channel with Magnetic Field Using Mesoscopic Method, J. Mol. Liq., vol. 249, pp. 739-746,2018.

  26. Ting, T.W., Hung, Y.M., and Guo, N., Entropy Generation of Viscous Dissipative Nanofluid Flow in Thermal Non-Equilibrium Porous Media Embedded in Microchannels, Int. J. Heat Mass Transf., vol. 81, pp. 862-877,2015.

  27. Torabi, M., Karimi, N., Peterson, G.P., and Yee, S., Challenges and Progress on the Modelling of Entropy Generation in Porous Media: A Review, Int. J. Heat Mass Transf., vol. 114, pp. 31-46, 2017a.

  28. Torabi, M., Torabi, M., and Ghiaasiaan, S.M., The Effect of Al2O3-Water Nanofluid on the Heat Transfer and Entropy Generation of Laminar Forced Convection through Isotropic Porous Media, Int. J. Heat Mass Transf., vol. 111, pp. 804-816, 2017b.

  29. Vafai, K. and Tien, C.L., Boundary and Inertia Effects on Convective Mass Transfer in Porous Media, Int. J. Heat Mass Transf., vol. 25, pp. 1183-1190, 1982.

  30. Wang, L., Huang, C., Yang, X., Chai, Z., and Shi, B., Effects of Temperature-Dependent Properties on Natural Convection of Power-Law Nanofluids in Rectangular Cavities with Sinusoidal Temperature Distribution, Int. J. Heat Mass Transf., vol. 128, pp. 688-699, 2019a.

  31. Wang, L., Yang, X., Huang, C., Chai, Z., and Shi, B., Hybrid Lattice Boltzmann-TVD Simulation of Natural Convection of Nanofluids in a Partially Heated Square Cavity Using Buongiorno's Model, Appl. Therm. Eng., vol. 146, pp. 318-327, 2019b.

  32. Xu, H.J., Gong, L., Huang, S.B., and Xu, M.H., Flow and Heat Transfer Characteristics of Nanofluid Flowing through Metal Foams, Int. J. Heat Mass Transf., vol. 83, pp. 399-407, 2015a.

  33. Xu, H.J., Gong, L., Zhao, C.Y., Yang, Y.H., andXu, Z.G., Analytical Considerations of Local Thermal Non-Equilibrium Conditions for Thermal Transport in Metal Foams, Int. J. Therm. Sci., vol. 95, pp. 73-87, 2015b.

  34. Xu, H.J., Gong, L., Zhao, C.Y., and Yin, Y., Non-Equilibrium Thermal Response of Porous Media in Unsteady Heat Conduction with Sinusoidally-Changing Boundary Temperature, J. Heat Transf., vol. 137, no. 11, p. 112601 (9 pages), 2015c. DOI: 10.1115/1.4030905.

  35. Xu, H.J. and Xing, Z.B., The Lattice Boltzmann Modeling on the Nanofluid Natural Convective Transport in a Cavity Filled with a Porous Foam, Int. Commun. Heat Mass Transf., vol. 89, pp. 73-82, 2017.

  36. Xu, H.J., Zhao, C.Y., and Vafai, K., Analysis of Double Slip Model for a Partially Filled Porous Microchannel-An Exact Solution, Euro. J. Mech.-B/Fluids, vol. 68, pp. 1-9, 2018.

  37. Yang, C., Li, W., and Nakayama, A., Convective Heat Transfer of Nanofluids in a Concentric Annulus, Int. J. Therm. Sci., vol. 71, pp. 249-257, 2013.

  38. Zhang, W., Li, W., and Nakayama, A., An Analytical Consideration of Steady-State Forced Convection within a Nanofluid-Saturated Metal Foam, J. Fluid Mech, vol. 769, pp. 590-620,2015.

  39. Zhang, X., Liu, Z., and Liu, W., Numerical Studies on Heat Transfer and Flow Characteristics for Laminar Flow in a Tube with Multiple Regularly Spaced Twisted Tapes, Int. J. Therm. Sci., vol. 58, pp. 157-167, 2012.

  40. Zhao, C.Y., Lu, T.J., and Hodson, H.P., Natural Convection in Metal Foams with Open Cells, Int. J. Heat Mass Transf., vol. 48, pp. 2452-2463, 2005.

  41. Zhao, C.Y., Lu, W., and Tassou, S.A., Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part II: Tube Heat Exchangers, Int. J. Heat Mass Transf, vol. 49, pp. 2762-2770, 2006.

  42. Zhou, L., Xuan, Y., and Li, Q., Multiscale Simulation of Flow and Heat Transfer of Nanofluid with Lattice Boltzmann Method, Int. J. Multiphase Flow, vol. 36, pp. 364-374, 2010.